期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Convergence Analysis of the Fully Decoupled Linear Scheme for Magnetohydrodynamic Equations
1
作者 Zeyu Xia Qian Xu 《Journal of Applied Mathematics and Physics》 2022年第11期3462-3474,共13页
In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt ... In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt a technique based on the “zero-energy-contribution” contribution, which separates the magnetic and fluid fields from the coupled system. Additionally, making use of the pressure projection methods, the pressure variable appears explicitly in the velocity field equation, and would be computed in the form of a Poisson equation. Therefore, the total system is divided into several smaller sub-systems that could be simulated at a significantly low cost. We prove the unconditional energy stability, unique solvability and optimal error estimates for the proposed scheme, and present numerical results to verify the accuracy, efficiency and stability of the scheme. 展开更多
关键词 MHD Equations zero-energy-contribution Unique Solvability Unconditional Energy Stability Optimal Error Estimates
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部