The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films ar...The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.展开更多
Zero field cooled (ZFC) and field cooled (FC) DC magnetization and AC susceptibility of sintered SrRuO 3 were measured over the magnetic ordering temperature. The peak in susceptibility against temperature shifts ...Zero field cooled (ZFC) and field cooled (FC) DC magnetization and AC susceptibility of sintered SrRuO 3 were measured over the magnetic ordering temperature. The peak in susceptibility against temperature shifts to lower temperature when the bias field increases. As the field still increases, the peak breaks into two peaks. One peak still shifts to lower temperature; the other shifts to higher temperature. Zero bias field susceptibility was measured at different frequencies. The peak value decreases as the increase of frequency, but it does not shift to higher temperature as reported previously. The results show that SrRuO 3 is not spin glass, but ferromagnet.展开更多
In this comparative study,Tb and Tm substituted Sr-hexafe rrites(HFs) with the chemical compositions of SrTb_(x)Fe_(12-x)O_(19) and SrTm_(x)Fe_(12-x)O_(19)(x=0.00,0.02 and 0.04) were fabricated via citrate sol-gel app...In this comparative study,Tb and Tm substituted Sr-hexafe rrites(HFs) with the chemical compositions of SrTb_(x)Fe_(12-x)O_(19) and SrTm_(x)Fe_(12-x)O_(19)(x=0.00,0.02 and 0.04) were fabricated via citrate sol-gel approach.The AC susceptibility and FC-ZFC magnetization were investigated.The product structure and morphologies were also investigated via XRD,TEM and SEM along with EDX.Measurements of temperature dependence of magnetization M-T and AC magnetic susceptibility versus temperature were carried out.The various synthesized HFs displayed ferrimagnetic behavior within 10-325 K.At lower temperatures,super-spin glass-like behavior was noticed.Neel-Arrhenius and Vogel-Fulcher models were employed to explore the experimental data of AC susceptibility.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61474103)the Chinese Scholarship Council(CSC)Fellowship for H.Tariq Masood and Z.Muhammad
文摘The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.
文摘Zero field cooled (ZFC) and field cooled (FC) DC magnetization and AC susceptibility of sintered SrRuO 3 were measured over the magnetic ordering temperature. The peak in susceptibility against temperature shifts to lower temperature when the bias field increases. As the field still increases, the peak breaks into two peaks. One peak still shifts to lower temperature; the other shifts to higher temperature. Zero bias field susceptibility was measured at different frequencies. The peak value decreases as the increase of frequency, but it does not shift to higher temperature as reported previously. The results show that SrRuO 3 is not spin glass, but ferromagnet.
文摘In this comparative study,Tb and Tm substituted Sr-hexafe rrites(HFs) with the chemical compositions of SrTb_(x)Fe_(12-x)O_(19) and SrTm_(x)Fe_(12-x)O_(19)(x=0.00,0.02 and 0.04) were fabricated via citrate sol-gel approach.The AC susceptibility and FC-ZFC magnetization were investigated.The product structure and morphologies were also investigated via XRD,TEM and SEM along with EDX.Measurements of temperature dependence of magnetization M-T and AC magnetic susceptibility versus temperature were carried out.The various synthesized HFs displayed ferrimagnetic behavior within 10-325 K.At lower temperatures,super-spin glass-like behavior was noticed.Neel-Arrhenius and Vogel-Fulcher models were employed to explore the experimental data of AC susceptibility.