期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron
1
作者 Yiwei Liu Kaili Gu +4 位作者 Jinhua Zhang Jinxiang Li Jieshu Qian Jinyou Shen Xiaohong Guan 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第2期1-11,共11页
Sulfated zero-valent iron(SZVI)has shown promising applications in wastewater treatment.However,the rapid decline in the reactivity of SZVI with time limits its real practice.To mediate this problem,partial aging was ... Sulfated zero-valent iron(SZVI)has shown promising applications in wastewater treatment.However,the rapid decline in the reactivity of SZVI with time limits its real practice.To mediate this problem,partial aging was proposed to improve the reactive durability of SZVI.Taking Cr(VI)as the target contaminant,we found that the aged ZVI(AZVI)gradually lost reactivity as aging time increased from 0.5 to 2 d.Counter-intuitively,the partially aged SZVI(ASZVI)showed greater reactivity than SZVI when exposed to oxygenated water for a period ranging from 0.5 to 14 d.In addition,the ASZVI with 0.5 d of aging time(ASZVI-0.5)not only maintained reactivity in successive runs but also increased the Cr(VI)removal capacity from 9.1 mg/g by SZVI to 19.1 mg/g by ASZVI-0.5.Correlation analysis further revealed that the electron transfer from the Fe0 core to the shell was mediated by the conductive FeS and FeS2 in the subshell of ASZVI.Meanwhile,the lepidocrocite and magnetite on the surface of ASZVI facilitated Cr(VI)adsorption and subsequent electron transfer for Cr(VI)reduction.Moreover,the iron(hydr)oxide shell could retain the conductive FeS and FeS2 in the subshell,allowing ASZVI to reduce Cr(VI)efficiently and sustainably.In general,partial aging can enhance the reactive durability of ZVI when coupled with sulfidation and this synergistic effect will be beneficial to the application of SZVI-based technology for wastewater treatment. 展开更多
关键词 zerovalent iron SULFIDATION Partial aging Interface reconstruction Electron transfer
原文传递
Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron 被引量:3
2
作者 Rongbing FU Na MU +2 位作者 Xiaopin GUO Zhen XU Dongsu BI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第5期867-878,共12页
Nanoscale zerovalent iron (nZVI) synthesized using sepiolite as a supporter was used to investigate the removal kinetics and mechanisms of decabromodiphenyl ether (BDE-209). BDE-209 was rapidly removed by the prep... Nanoscale zerovalent iron (nZVI) synthesized using sepiolite as a supporter was used to investigate the removal kinetics and mechanisms of decabromodiphenyl ether (BDE-209). BDE-209 was rapidly removed by the prepared sepiolite-supported nZVI with a reaction rate that was 5 times greater than that of the conventionally prepared nZVI because of its high surface area and reactivity. The degradation of BDE-209 occurred in a stepwise debromination manner, which followed pseudo- first-order kinetics. The removal efficiency of BDE-209 increased with increasing dosage of sepiolite-supported nZVI particles and decreasing pH, and the efficiency decreased with increasing initial BDE-209 concentrations. The presence of tetrahydrofuran (THF) as a cosolvent at certain volume fractions in water influenced the degrada- tion rate of sepiolite-supported nZVI. Debromination pathways of BDE-209 with sepiolite-supported nZVI were proposed based on the identified reaction intermedi- ates, which ranged from nona- to mono-brominated diphenylethers (BDEs) under acidic conditions and nonato penta-BDEs under alkaline conditions. Adsorption on sepiolite-supported nZVI particles also played a role in the removal of BDE-209. Our findings indicate that the particles have potential applications in removing environ- mental pollutants, such as halogenated organic contami- nants. 展开更多
关键词 sepiolite-supported nanoscale zerovalent iron decabromodiphenyl ether DEBROMINATION adsorption mechanism
原文传递
Biochar-supported nano-scale zerovalent iron activated persulfate for remediation of aromatic hydrocarbon-contaminated soil:an in-situ pilot-scale study
3
作者 Yu Zeng Tai Li +7 位作者 Yingzhi Ding Guodong Fang Xiaolei Wang Bo Ye Liqiang Ge Juan Gao Yujun Wang Dongmei Zhou 《Biochar》 SCIE 2022年第1期122-133,共12页
Biochar supported nano-scale zerovalent iron(nZVI/BC)for persulfate(PS)activation has been studied extensively for the degradation of pollutants on the lab scale,but it was rarely applied in practical soil remediation... Biochar supported nano-scale zerovalent iron(nZVI/BC)for persulfate(PS)activation has been studied extensively for the degradation of pollutants on the lab scale,but it was rarely applied in practical soil remediation in the field.In this research,we developed a facile ball-milling method for the mass production of nZVI/BC,which was successfully applied to activate persulfate for the remediation of organic polluted soil on an in-situ pilot scale.In-situ high-pressure injection device was developed to inject nZVI/BC suspension and PS solution into the soil with a depth of 0-70 cm.The removal efficiency of target pollutants such as 2-ethylnitrobenzene(ENB,1.47-1.56 mg/kg),biphenyl(BP,0.19-0.21 mg/kg),4-(methylsulfonyl)toluene(MST,0.32-0.43 mg/kg),and 4-phenylphenol(PP,1.70-2.46 mg/kg)at different soil depths was 99.7%,99.1%,99.9%and 99.7%,respectively,after 360 days of remediation.The application of nZVI/BC significantly increased the degradation rates of contaminants by 11-322%,ascribed to its relatively higher efficiency of free radical generation than that of control groups.In addition,it was found that nZVI/BC-PS inhibited soil urease and sucrase enzyme activities by 1-61%within 55 days due to the oxidative stress for microbes induced by free radicals,while these inhibition effects disappeared with remediation time prolonged(>127 days).Our research provides a useful implementation case of remediation with nZVI/BC-PS activation and verifies its feasibility in practical contaminated soil remediation. 展开更多
关键词 PERSULFATE BIOCHAR Nanoscale zerovalent iron PILOT-SCALE Enzyme activities
原文传递
Nano-Phytotechnological Remediation of Endosulfan Using Zero Valent Iron Nanoparticles 被引量:1
4
作者 Harikumar P. S. Pillai Jesitha Kottekottil 《Journal of Environmental Protection》 2016年第5期734-744,共11页
Endosulfan, an organochlorine pesticide, is known for its toxicity and ability to accumulate in the environment. In India endosulfan was banned only in 2011 and hence toxic residues are still persistent in the environ... Endosulfan, an organochlorine pesticide, is known for its toxicity and ability to accumulate in the environment. In India endosulfan was banned only in 2011 and hence toxic residues are still persistent in the environment. The abilities of three plant species Chittaratha (Alpinia calcarata), Tulsi (Ocimum sanctum), and Lemongrass (Cymbopogon citratus) to remove endosulfan from soil in the absence and presence of zerovalent iron nanoparticles (nZVIs) (1000 mg/Kg of soil), i.e., by phytoremediation and nano-phytoremediation, were determined. Extracted soil samples from the experimental plot were analyzed using Gas Chromatograph with Electron Capture Detector (GC-ECD) and final dehalogenated product was confirmed by Mass Spectrometer (MS). A. calcarata had the best efficiency compared to the other two plant species and the efficiency decreased in the order A. calcarata > O. sanctum> C. citrates. The initial endosulfan removal rate was high (82% was removed within 7 days) when nano phytoremediation experiments were conducted with A. calcarata but then gradually decreased, probably because the activity of nZVI decreased over time. The nZVI endosulfan degradation mechanism appears to involve hydrogenolysis and sequential dehalogenation which was confirmed by GC-MS analysis. Only small amounts of endosulfan were accumulated in the plants because the added nZVIs might have promoted the reductive dechlorination of endosulfan. 展开更多
关键词 ENDOSULFAN PHYTOREMEDIATION Nano-Phytoremediation zerovalent iron Nanoparticles
下载PDF
Sorption of lanthanide ions on biochar composites 被引量:6
5
作者 Dorota Kotodyniska Justyna Bak +1 位作者 Malwina Majdariska Dominika Fila 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第11期1212-1220,共9页
Sorption of lanthanum(Ⅲ), cerium(Ⅲ and neodymium(Ⅲ) ions from the aqueous solutions of mixtures through adsorption on the biochar composites was investigated as a function of sorbent mass, pH, phase contact ti... Sorption of lanthanum(Ⅲ), cerium(Ⅲ and neodymium(Ⅲ) ions from the aqueous solutions of mixtures through adsorption on the biochar composites was investigated as a function of sorbent mass, pH, phase contact time and initial concentration of solutions at 295 K. The maximum removal of lanthanide ions takes place under the following conditions: 0.1 g of sorbent mass, pH 4 and 360 rain contact time for all studied initial concentrations of solutions. Kinetics of La(Ⅲ), Ce(Ⅲ) and Nd(Ⅲ) ions sorption proceeded by a fast initial uptake reached equilibrium. This process was modelled by means of the pseudo first order, pseudo second order, intraparticle diffusion and Elovich models. The desorption of three lanthahide ions by nitric, hydrochloric and sulfuric acids at a concentration of 1 mol/L from biochar composites was also studied. In order to investigate the sorption mechanism FFIR, XRD and XPS analyses were performed after sorption of ions from the mixture. 展开更多
关键词 Lanthanide ions Biochar composites Sorption mechanism zerovalent iron Rare earths
原文传递
Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles 被引量:2
6
作者 Min ZHANG Jian LU +4 位作者 ZhenchengXU Yiliang HF Bo ZHANG Song JIN Brian BOMAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第5期832-839,共8页
Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in var... Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/ Palladium bimetallic nanoparticles (nZVI/Pd) were synthe- sized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVL Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 x higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZV//Pd may be an effective tool for treating polybromi- nated diphenyl ethers (PBDEs) in water. 展开更多
关键词 bimetallic nanoparticles nanoscale zerovalent iron polybrominated diphenyl ethers DEGRADATION
原文传递
Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor 被引量:1
7
作者 Yuling CAI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第5期879-887,共9页
As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybromi- nated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its ... As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybromi- nated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni2+ 〉 Cu2+ 〉 Co2+ and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumu- lative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal. 展开更多
关键词 steel pickling waste liquor nanoscale zero-valet metal nanoscale zerovalent iron humic acid metalion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部