Phytoplankton communities can response immediately and directly to environmental changes,and thus have been applied as reliable biotic indicators in aquatic systems.This study provided insights into the relationships ...Phytoplankton communities can response immediately and directly to environmental changes,and thus have been applied as reliable biotic indicators in aquatic systems.This study provided insights into the relationships concerning ecological thresholds of phytoplankton communities and individual taxon in response to environmental changes in coastal waters of northern Zhejiang Province,East China Sea.Results demonstrated that there existed seasonal variations of phytoplankton community ecological thresholds of which spring being higher than those in summer.As for individual species,Prorocentrum donghaiense and Noctiluca scintillans were identified as the most tolerant and sensitive indicator species in spring and summer,respectively.They exhibited strong indications in response to environmental changes.These findings highlighted that phytoplankton community structure in this region was stable when environmental gradients were below the thresholds of sensitive species,whereas potential harmful algal blooms may occur when environmental gradients exceeded the thresholds of tolerant species.展开更多
This study attempted to compare the performance of local polynomial interpolation,inverse distance weighted interpolation,and ordinary kriging in studying distribution patterns of swimming crabs.Cross-validation was u...This study attempted to compare the performance of local polynomial interpolation,inverse distance weighted interpolation,and ordinary kriging in studying distribution patterns of swimming crabs.Cross-validation was used to select the optimum method to get distribution results,and kriging was used for making spatial variability analysis.Data were collected from 87 sampling stations in November of 2015(autumn)and February(winter),May(spring)and August(summer)of 2016.Results indicate that swimming crabs widely distributed in autumn and summer:in the summer,they were more spatially independent,and resources in each sampling station varied a lot;in the winter and spring,the abundance of crabs was much lower,but the individual crab size was bigger,and they showed the patchy and more concentrative distribution pattern,which means they were more spatially dependent.Distribution patterns were in accordance with ecological migration features of swimming crabs,which were affected by the changing marine environment.This study could infer that it is applicable to study crab fishery or even other crustacean species using geostatistical analysis.It not only helps practitioners have a better understanding of how swimming crabs migrate from season to season,but also assists researchers in carrying out a more comprehensive assessment of the fishery.Therefore,it may facilitate advancing the implementation in the pilot quota management program of swimming crabs in northern Zhejiang fishing grounds.展开更多
In order to better understand the general tidal features in the venturi-shaped area between Zhenhai and Shenjiamen in the northern coastal region of Zhejiang Province in the East China Sea, the tidal data were obtaine...In order to better understand the general tidal features in the venturi-shaped area between Zhenhai and Shenjiamen in the northern coastal region of Zhejiang Province in the East China Sea, the tidal data were obtained from both the three permanent tide stations of Zhenhai, Dinghai and Shenjiamen, and four temporary tide stations of Mamu, Chuanshan, Guoju and Liuheng, along with the current speed being observed at Luotou Waterway. Results from harmonic analysis show that: (1) The area was dominated by shallow water tides with irregular semi-diurnal features, and the smallest tidal range occurred in the area near a crossing line between Zhenhai and Dinghai stations, indicating that a tidal node existed in the southern Hangzhou Bay; (2) Formulae, HS2/HM2 >0.4 and gM2-(gK1+gO1)=270° (where H and g are harmonic constants), could be used as judging criteria for high and low tidal level diurnal inequalities; (3) The duration difference between ebb and flood tides could be roughly assessed by the ratio of HM4 vs. HM2; and the larger the ratio is, the bigger the duration difference is. At the same time, the duration period could be assessed by 2gM2-gM4, the epoch difference between M2 and M4 tidal constituents. If 2gM2-gM4 <180°, then the ebb duration is longer than the flood duration; if 180°< 2gM2-gM4 <360°, the result is reversed; (4) Taking Dinghai station as a center point, the highest tidal levels and the average high tidal levels, as well as the average tidal ranges at all stations became higher and larger both southeastwards and northwestwards, while the lowest tidal levels and the average low tidal levels appeared to be lower both southeastwards and northwestwards; and (5) The tidal patterns were not all in line with the tidal current patterns. As a conclusion, the smallest tidal range occurred in the narrow part of the venturi-shaped area. Along the both sides of the area, the highest tidal level and tidal range became higher and larger, while the lowest tidal level became lower with the increase of the distance from the narrow throat area. This is somehow different from the theory that the tidal level increases gradually when it moves towards the top narrow area of a V-shaped bay or estuary.展开更多
基金The Quantitative Analysis of Distribution Pattern of Water Quality and Design of Monitoring Networks in Xiangshan Bay and its Adjacent Waters,Northern Coastal Zhejiang under contract No.15130401。
文摘Phytoplankton communities can response immediately and directly to environmental changes,and thus have been applied as reliable biotic indicators in aquatic systems.This study provided insights into the relationships concerning ecological thresholds of phytoplankton communities and individual taxon in response to environmental changes in coastal waters of northern Zhejiang Province,East China Sea.Results demonstrated that there existed seasonal variations of phytoplankton community ecological thresholds of which spring being higher than those in summer.As for individual species,Prorocentrum donghaiense and Noctiluca scintillans were identified as the most tolerant and sensitive indicator species in spring and summer,respectively.They exhibited strong indications in response to environmental changes.These findings highlighted that phytoplankton community structure in this region was stable when environmental gradients were below the thresholds of sensitive species,whereas potential harmful algal blooms may occur when environmental gradients exceeded the thresholds of tolerant species.
文摘This study attempted to compare the performance of local polynomial interpolation,inverse distance weighted interpolation,and ordinary kriging in studying distribution patterns of swimming crabs.Cross-validation was used to select the optimum method to get distribution results,and kriging was used for making spatial variability analysis.Data were collected from 87 sampling stations in November of 2015(autumn)and February(winter),May(spring)and August(summer)of 2016.Results indicate that swimming crabs widely distributed in autumn and summer:in the summer,they were more spatially independent,and resources in each sampling station varied a lot;in the winter and spring,the abundance of crabs was much lower,but the individual crab size was bigger,and they showed the patchy and more concentrative distribution pattern,which means they were more spatially dependent.Distribution patterns were in accordance with ecological migration features of swimming crabs,which were affected by the changing marine environment.This study could infer that it is applicable to study crab fishery or even other crustacean species using geostatistical analysis.It not only helps practitioners have a better understanding of how swimming crabs migrate from season to season,but also assists researchers in carrying out a more comprehensive assessment of the fishery.Therefore,it may facilitate advancing the implementation in the pilot quota management program of swimming crabs in northern Zhejiang fishing grounds.
基金Supported by Study on the Temporal and Spatial Distributions of Temperature and Salinity in Xiangshan Bay and the Northern Zhejiang Coastal Waters in the East China Sea of the Education Department of Zhejiang Provincial Government of China (Project No. 20061134)Study on Environment Dynamics and Nutrient Circulation in Xiangshan Bay and its Surrounding Areas in the East China Sea of the Second Institute of Oceanography, State Oceanic Administration, China (Project No. SOED0605)
文摘In order to better understand the general tidal features in the venturi-shaped area between Zhenhai and Shenjiamen in the northern coastal region of Zhejiang Province in the East China Sea, the tidal data were obtained from both the three permanent tide stations of Zhenhai, Dinghai and Shenjiamen, and four temporary tide stations of Mamu, Chuanshan, Guoju and Liuheng, along with the current speed being observed at Luotou Waterway. Results from harmonic analysis show that: (1) The area was dominated by shallow water tides with irregular semi-diurnal features, and the smallest tidal range occurred in the area near a crossing line between Zhenhai and Dinghai stations, indicating that a tidal node existed in the southern Hangzhou Bay; (2) Formulae, HS2/HM2 >0.4 and gM2-(gK1+gO1)=270° (where H and g are harmonic constants), could be used as judging criteria for high and low tidal level diurnal inequalities; (3) The duration difference between ebb and flood tides could be roughly assessed by the ratio of HM4 vs. HM2; and the larger the ratio is, the bigger the duration difference is. At the same time, the duration period could be assessed by 2gM2-gM4, the epoch difference between M2 and M4 tidal constituents. If 2gM2-gM4 <180°, then the ebb duration is longer than the flood duration; if 180°< 2gM2-gM4 <360°, the result is reversed; (4) Taking Dinghai station as a center point, the highest tidal levels and the average high tidal levels, as well as the average tidal ranges at all stations became higher and larger both southeastwards and northwestwards, while the lowest tidal levels and the average low tidal levels appeared to be lower both southeastwards and northwestwards; and (5) The tidal patterns were not all in line with the tidal current patterns. As a conclusion, the smallest tidal range occurred in the narrow part of the venturi-shaped area. Along the both sides of the area, the highest tidal level and tidal range became higher and larger, while the lowest tidal level became lower with the increase of the distance from the narrow throat area. This is somehow different from the theory that the tidal level increases gradually when it moves towards the top narrow area of a V-shaped bay or estuary.