The contribution rate of ecosystem service value variation was used to analyze the effects of land use changes on the changes of ecosystem service value in Xingguo County during 1996-2005.Grey integrated correlation w...The contribution rate of ecosystem service value variation was used to analyze the effects of land use changes on the changes of ecosystem service value in Xingguo County during 1996-2005.Grey integrated correlation was employed to explore the contribution level of the indicators such as total population,urbanization level,proportion of primary industry and investment of social fixed assets on ecosystem service value,and the correlation analysis was also carried out.The results showed that the ecosystem service value in Xingguo County during 1996-2005 mainly was woodland,and the decrease of woodland area was the major reason for the sustained reduction of ecosystem service value.With the further increase of market demand and the incentives of local government,the garden area rapidly increased during 2001-2005,and the influence degree of garden towards the changes of ecosystem service value was only second to woodland,ranking No.2.Four socio-economic indicators had different correlation degree with ecosystem service value during the different research periods.Total population,urbanization level and proportion of primary industry had high correlation degree with ecosystem service value,whereas the influence degree of various socio-economic indicators on ecosystem service value was equal with each other day by day.Urbanization level,investment of social fixed assets and total population had significant negative correlation with ecosystem service value,while the proportion of primary industry had positive correlation with ecosystem service value.展开更多
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data...Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and intensive precipitation, rill can be formed starting even at 15 m from the top of the slope.展开更多
Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil phys...Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.展开更多
Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefo...Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.展开更多
In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, so...In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, soil micromorphological methods and techniques were used to study the erosion zonal distribution in the region. The results indicated: (1) According to erosion process, the spacial distribution zones of the erosions and landslides in the purple hilly region with different solums were divided into scouring erosion zone, transport-diffusion zone, rocks and soil turbulence zone and sediment-bury zone; (2) The soil micromorphologic taxonomic feature identifying different erosion-landslide zone were found by studying the soil micromorphology of erosive zone in purple hilly region; (3) As for the erosion–landslide formation in the region, besides the external factors, the internal factors were found more important and favorable for landslide formation through the studies on the micormorphological features of slide soil.展开更多
The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed t...The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed the dynamic evolution features of supply and demand of four ESs in Lanzhou of China,namely,water supply,food supply,carbon fixation and soil retention services.The crosssectional data of 2005 and 2017 were used for calculating ESs value and its supply and demand through ArcGIS software,InVEST model,elastic coefficient model and coupling coordination model.Results showed that:1)from 2005 to 2017,the supply of water supply services increased,the demand of soil retention services decreased,and the supply and demand of food supply and carbon fixation services increased.The high-value areas of service supply were mainly distributed in the rocky mountain areas in the southeast and northwest with high vegetation coverage,while the high-value areas of demand were mainly distributed in the urban areas and surrounding areas with high population density.2)There were five different types of coupling relations.Water supply service was dominated by a negative coupling type D,which means that the decrease in demand for ESs has had a positive response on the supply of ESs.Negative coupling type C was the main type of food supply and carbon fixation services,which means that the increase in demand for ESs has had a negative response on the supply of ESs.All three services were supplemented by a positive coupling type A,which means that the increase in demand for ESs has had a positive response on the supply of ESs.Soil retention service generally exhibits a positive coupling type B,which means that the decrease in demand for ESs has had a negative response on the supply of ESs.3)Over the past 12 yr,the coordination degree of supply and demand of water supply,food supply and soil retention services decreased,and the coordination degree of carbon fixation service increased.Various types of ES had a low degree of coupling and coordination,showing different characteristics of temporal and spatial evolution.The areas with imbalanced ESs supply and demand were mainly distributed in urban areas dominated by construction land.The research results are valuable to the optimisation of urban and rural ecological environments and the sustainable development of territory space under the framework of ecological civilisation,including similar ecologically vulnerable areas in other developing countries.展开更多
The soil and water conservation practices of ecological restoration(ER),fish scale pit(FP),furrow and ridge tillage across the slope(FR),shrub strips(SS),and vegetation-covered ridge(VR)are characteristic of the Jixin...The soil and water conservation practices of ecological restoration(ER),fish scale pit(FP),furrow and ridge tillage across the slope(FR),shrub strips(SS),and vegetation-covered ridge(VR)are characteristic of the Jixing small watershed of the low mountain and hilly region of Jilin Province,Northeast China.This study aims to elucidate the effects of soil and water conservation practices on soil conditions after the short-term implementation of practices.Soil samples were collected from five soil and water conservation sites(ER,FP,FR,SS,and VR)and two controls(BL and CT)to investigate their properties.To evaluate the influence of soil and water conservation practices on soil quality,an integrated quantitative index,soil quality index(QI),was developed to compare the soil quality under the different soil and water conservation practices.The results show that not all soil and water conservation practices can improve the soil conditions and not all soil properties,especially soil organic carbon(SOC),can be recovered under soil and water conservation practice in short-term.Moreover,the QI in the five soil and water conservation practices and two controls was in the following order:ER>VR>BL>FR>CT>SS>FP.ER exhibited a higher soil quality value on a slope scale.In the low mountain and hilly region of Northeast China,ER is a better choice than the conversion of farmlands to planted grasslands and woodlands early in the soil and water conservation program.展开更多
[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temp...[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.展开更多
High-intensity and large-scale resource development seriously threatens the fragile ecological environment in the red soil hilly region in southern China. This paper analyzes the eco-geological environmental problems ...High-intensity and large-scale resource development seriously threatens the fragile ecological environment in the red soil hilly region in southern China. This paper analyzes the eco-geological environmental problems and factors affecting Ganzhou, a mining city in the red soil hilly region,based on field survey and literature. The ecogeological environment quality(EGEQ) assessment system, which covered 11 indicators in physical geography, mining development, geological hazards,as well as water and soil pollution, was established through multi-source data utilization such as remote sensing images, DEM(Digital Elevation Model), field survey and on-site monitoring data. The comprehensive weight of each indicator was calculated through the Analytic Hierarchy Process(AHP) and entropy method. The eco-geological environment assessment map was developed by calculating the EGEQ value through the linear weighted method. The assessment results show that the EGEQ was classified into I-V grades from excellent to worse, among which, EGEQ of I-II accounted for 29.88%, EGEQ of III accounted for 32.35% and EGEQ of IV-V accounted for 37.77%;the overall EGEQ of Ganzhou was moderate. The assessment system utilized in this research provides scientific and accurate results, which in turn enable the proposal of some tangible protection suggestions.展开更多
Land degradation, caused by water erosion. closely related to inherent vulnerabilities of itseco-environment in South China. Spatial variation of land degradation from top to foot of a slope wasmainly induced by diffe...Land degradation, caused by water erosion. closely related to inherent vulnerabilities of itseco-environment in South China. Spatial variation of land degradation from top to foot of a slope wasmainly induced by differentiation of surface materials and their erodibility, nutrient and moisture dueto downslope variation of land erosion. It was showed by comparing maps of land degradationbetween the 1950s and the 1980s that changes of land degradation varied from one area to anotherbecause of differences of human activities, including land reclamation and vegetation depletion.展开更多
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove...The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.展开更多
Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field ...Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field work, and 3S(Geographic information system, Global positioning system, and Remote sensing) to explore soil fertility catastrophe under ecological restoration, discriminate whether soil fertility can self-develop, and propose adjustment of ecological restoration measures in the Zhuxi watershed of Changting County, Fujian Province, China, which is a typical representative of the red soil hilly region of China. The results show that: 1) the soil fertility is obviously improved through the four ecological restoration measures, which impels soil fertility catastrophe. Among 89 soil samples, catastrophic soil samples and stable soil samples account for 26(29.21%) and 63(70.79%) of the samples, respectively. The four ecological restoration measures are listed in the order lowquality forest improvement > arbor–bush–herb mixed plantation > orchard improvement > closing measures according to the proportions of catastrophic soil samples. A typical soil sample in Bashilihe that can self-develop is selected as the criterion to judge the upper lobe and lower lobe of soil fertility in the process surface of the Cusp catastrophe model. Twenty-six(29.21%) were in the middle lobe, 10(11.24%) were in the upper lobe, and 53(70.79%) were in the lower lobe. The catastrophic direction of 26 catastrophic soil samples is to the upper lobe according to soil and water loss change as well as fieldwork. There is a significant positive correlation of Δ with soil and water loss change, and the lower soil and water loss relates to higher catastrophic probability. 2) Soil fertility self-development could be regionalized as "Soil fertility can self-develop" whose area was 12.74 km2(28.33%) distributed mainly in the leftmost and rightmost parts, "Soil fertility tends to self-develop" whose area was 11.63 km2(25.89%) distributed mainly in the middle part, and "Soil fertility cannot self-develop" whose area was 20.58 km2(45.78%) distributed mainly between the above two types. 3) There is no need to take ecological restoration measures and excessive human interference should be avoided in the future in regions of "Soil fertility can self-develop" and "Soil fertility tends to self-develop," and ecological restoration measures should be taken in region of "Soil fertility cannot self-develop." 4) We suggest withdrawal and implementation of ecological restoration measures should be incorporated into the evaluation criteria of ecological restoration to avoid misuse of funds.展开更多
Methane(CH_(4))is an important greenhouse gas second only to CO_(2)in terms of its greenhouse effect.Vegetation plays an important role in controlling soil CH_(4)fluxes,but the spatial variability of soil CH_(4)fluxes...Methane(CH_(4))is an important greenhouse gas second only to CO_(2)in terms of its greenhouse effect.Vegetation plays an important role in controlling soil CH_(4)fluxes,but the spatial variability of soil CH_(4)fluxes during vegetation restoration in Loess Hilly Region(LHR)is not fully understood.The effects of different plant community types[Medicago sativa grassland(MS);Xanthoceras sorbifolium forestland(XS);Caragana korshinskii bushland(CK);Hippophae rhamnoides shrubland(HR);and Stipa bungeana grassland(SB)]on soil CH_(4)flux in LHR were studied via the static chamber technique.The results showed that the five plant community types were sinks of soil CH_(4)in LHR,the plant community type significantly affected the soil CH_(4)flux,and the average CH_(4)uptake from high to low was in SB,HR,CK,MS,and XS.During the whole study period,the soil CH_(4)flux showed similar interannual variation.The maximum absorption of soil CH_(4)appeared in the growing season,while the minimum appeared in winter.Soil CH_(4)uptake was positively correlated with soil temperature and soil moisture.Soil temperature and moisture are important controlling factors for the temporal variability of soil CH_(4)flux.In LHR,the Stipa bungeana grassland is the more suitable plant community type for reducing soil CH_(4)emissions.In the process of vegetation restoration in LHR,the soil CH_(4)absorption potential of different plant community types should be considered,ecological benefits should be taken into account,and vegetation more suitable for mitigating the greenhouse effect should be selected.展开更多
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t...Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.展开更多
Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hil...Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.展开更多
The worldwide extension and intensification of farming during the last century has led to ecosystem degradation and caused a series of environmental problems.Conservation of ecosystem services in agricultural regions ...The worldwide extension and intensification of farming during the last century has led to ecosystem degradation and caused a series of environmental problems.Conservation of ecosystem services in agricultural regions has been implemented by top-down government actions or initiated by resilience scientists in the developed countries,but little attention was paid in the developing countries,especially in some remote mountainous regions.The present paper presents a case study showing how local farmers obtained both maximal societal outcomes and agroecosystem conservation interests in the absence of distinct boundaries between agricultural and protected ecological areas in the densely populated purple-soiled hilly region of southwestern China.The local community(Yanting County) has developed a mosaic agricultural-forestry-fishery-stock breeding system with spatially targeted land uses,diverse agricultural productions and multiple ecological partnerships.It indicates that the local farmers have hereditarily perceived sound strategies on maximizing sustainable societal outcomes and optimizing tradeoffs among macro-market,state policy,new technological facility and ecological reinforcement.展开更多
The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been rega...The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been regarded as a powerful measure for the ecological restoration in the Loess Plateau and the upper reaches of the Yangtze River. "Relieving and de-farming" (RD) and "rebuilding terrace and de-farming" (RTD) are two more mature ones among various de-farming modes. Taking the loess hilly-gully region as a case, this paper summarized the basic characteristics of RD and RTD modes, calculated the sizes of de-farming slope farmland, rebuilt terraces, enlarged garden plots and restored vegetation, and compared the differences of two modes in terms of de-farming area, ecological reestablishment index, investment demand amount and benefits. The results showed that RTD mode has many advantages, including suitable investment, sufficient grain supply and great benefits, and will be the best ecological reestablishment mode in the loess hilly-gully region, and RD mode which is being carried out in this region should be replaced by RTD mode as soon as possible.展开更多
Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different s...Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.展开更多
Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studie...Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly.展开更多
As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed...As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.展开更多
基金Supported by Natural Science Foundation of Jiangxi Province"Research on Optimization Model of Land Use in Southern Hilly Region with Red Soil in Jiangxi Province based on Ecological Security Evaluation"(2008GQH0057)Educational Commission of Jiangxi Province"Research on Scenario Simulation of Land Use Security Pattern in Southern Hilly Region with Red Soil in Jiangxi Province" (GJJ09557)Innovative Experimental Projects of National University Students"Research on Land Use Ecological Security Assessment in Hilly Region with Red Soil based on GIS-Xingguo County in Jiangxi Province as an Example"(101042124)~~
文摘The contribution rate of ecosystem service value variation was used to analyze the effects of land use changes on the changes of ecosystem service value in Xingguo County during 1996-2005.Grey integrated correlation was employed to explore the contribution level of the indicators such as total population,urbanization level,proportion of primary industry and investment of social fixed assets on ecosystem service value,and the correlation analysis was also carried out.The results showed that the ecosystem service value in Xingguo County during 1996-2005 mainly was woodland,and the decrease of woodland area was the major reason for the sustained reduction of ecosystem service value.With the further increase of market demand and the incentives of local government,the garden area rapidly increased during 2001-2005,and the influence degree of garden towards the changes of ecosystem service value was only second to woodland,ranking No.2.Four socio-economic indicators had different correlation degree with ecosystem service value during the different research periods.Total population,urbanization level and proportion of primary industry had high correlation degree with ecosystem service value,whereas the influence degree of various socio-economic indicators on ecosystem service value was equal with each other day by day.Urbanization level,investment of social fixed assets and total population had significant negative correlation with ecosystem service value,while the proportion of primary industry had positive correlation with ecosystem service value.
基金National Basic Research Program of China, No.2007CB407207Knowledge Innovation Project of Institute of Geographic Sciences and Natural Resources Research,CAS,No.CXIOG-A04-10the support from CAS through its "One Hundred Talent" program
文摘Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and intensive precipitation, rill can be formed starting even at 15 m from the top of the slope.
基金financially supported by the National Natural Science Foundation of China (41630858)
文摘Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.
文摘Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX3-SW-330)the State Natural Science Foundation for Outstanding Personnel of China(40025103)
文摘In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, soil micromorphological methods and techniques were used to study the erosion zonal distribution in the region. The results indicated: (1) According to erosion process, the spacial distribution zones of the erosions and landslides in the purple hilly region with different solums were divided into scouring erosion zone, transport-diffusion zone, rocks and soil turbulence zone and sediment-bury zone; (2) The soil micromorphologic taxonomic feature identifying different erosion-landslide zone were found by studying the soil micromorphology of erosive zone in purple hilly region; (3) As for the erosion–landslide formation in the region, besides the external factors, the internal factors were found more important and favorable for landslide formation through the studies on the micormorphological features of slide soil.
基金Under the auspices of National Natural Science Foundation of China(No.41861034)。
文摘The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed the dynamic evolution features of supply and demand of four ESs in Lanzhou of China,namely,water supply,food supply,carbon fixation and soil retention services.The crosssectional data of 2005 and 2017 were used for calculating ESs value and its supply and demand through ArcGIS software,InVEST model,elastic coefficient model and coupling coordination model.Results showed that:1)from 2005 to 2017,the supply of water supply services increased,the demand of soil retention services decreased,and the supply and demand of food supply and carbon fixation services increased.The high-value areas of service supply were mainly distributed in the rocky mountain areas in the southeast and northwest with high vegetation coverage,while the high-value areas of demand were mainly distributed in the urban areas and surrounding areas with high population density.2)There were five different types of coupling relations.Water supply service was dominated by a negative coupling type D,which means that the decrease in demand for ESs has had a positive response on the supply of ESs.Negative coupling type C was the main type of food supply and carbon fixation services,which means that the increase in demand for ESs has had a negative response on the supply of ESs.All three services were supplemented by a positive coupling type A,which means that the increase in demand for ESs has had a positive response on the supply of ESs.Soil retention service generally exhibits a positive coupling type B,which means that the decrease in demand for ESs has had a negative response on the supply of ESs.3)Over the past 12 yr,the coordination degree of supply and demand of water supply,food supply and soil retention services decreased,and the coordination degree of carbon fixation service increased.Various types of ES had a low degree of coupling and coordination,showing different characteristics of temporal and spatial evolution.The areas with imbalanced ESs supply and demand were mainly distributed in urban areas dominated by construction land.The research results are valuable to the optimisation of urban and rural ecological environments and the sustainable development of territory space under the framework of ecological civilisation,including similar ecologically vulnerable areas in other developing countries.
基金Under the auspices of Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(No.10501-1210)National Natural Science Foundation of China(No.31101606)+1 种基金Basic Scientific Research Operating Expenses of Jilin University(No.200903377)National Key Projects in National Science&Technology Program during the 12th Five-Year Plan Period of China(No.2011BAD16B10-3,2012BAD04B02-3)
文摘The soil and water conservation practices of ecological restoration(ER),fish scale pit(FP),furrow and ridge tillage across the slope(FR),shrub strips(SS),and vegetation-covered ridge(VR)are characteristic of the Jixing small watershed of the low mountain and hilly region of Jilin Province,Northeast China.This study aims to elucidate the effects of soil and water conservation practices on soil conditions after the short-term implementation of practices.Soil samples were collected from five soil and water conservation sites(ER,FP,FR,SS,and VR)and two controls(BL and CT)to investigate their properties.To evaluate the influence of soil and water conservation practices on soil quality,an integrated quantitative index,soil quality index(QI),was developed to compare the soil quality under the different soil and water conservation practices.The results show that not all soil and water conservation practices can improve the soil conditions and not all soil properties,especially soil organic carbon(SOC),can be recovered under soil and water conservation practice in short-term.Moreover,the QI in the five soil and water conservation practices and two controls was in the following order:ER>VR>BL>FR>CT>SS>FP.ER exhibited a higher soil quality value on a slope scale.In the low mountain and hilly region of Northeast China,ER is a better choice than the conversion of farmlands to planted grasslands and woodlands early in the soil and water conservation program.
文摘[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.
基金financially supported by the Key Special Project of National Natural Science Foundation of China (No.41941018)the Fundamental Research Funds for the Key Laboratory of Geotechnical and Underground Engineering (Tongji University)the Ministry of Education (Grant No.KLE-TJGE-B1905)。
文摘High-intensity and large-scale resource development seriously threatens the fragile ecological environment in the red soil hilly region in southern China. This paper analyzes the eco-geological environmental problems and factors affecting Ganzhou, a mining city in the red soil hilly region,based on field survey and literature. The ecogeological environment quality(EGEQ) assessment system, which covered 11 indicators in physical geography, mining development, geological hazards,as well as water and soil pollution, was established through multi-source data utilization such as remote sensing images, DEM(Digital Elevation Model), field survey and on-site monitoring data. The comprehensive weight of each indicator was calculated through the Analytic Hierarchy Process(AHP) and entropy method. The eco-geological environment assessment map was developed by calculating the EGEQ value through the linear weighted method. The assessment results show that the EGEQ was classified into I-V grades from excellent to worse, among which, EGEQ of I-II accounted for 29.88%, EGEQ of III accounted for 32.35% and EGEQ of IV-V accounted for 37.77%;the overall EGEQ of Ganzhou was moderate. The assessment system utilized in this research provides scientific and accurate results, which in turn enable the proposal of some tangible protection suggestions.
文摘Land degradation, caused by water erosion. closely related to inherent vulnerabilities of itseco-environment in South China. Spatial variation of land degradation from top to foot of a slope wasmainly induced by differentiation of surface materials and their erodibility, nutrient and moisture dueto downslope variation of land erosion. It was showed by comparing maps of land degradationbetween the 1950s and the 1980s that changes of land degradation varied from one area to anotherbecause of differences of human activities, including land reclamation and vegetation depletion.
文摘The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.
基金funded by the National Natural Science Foundation of China(Grant Nos.41371512,41001170)
文摘Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field work, and 3S(Geographic information system, Global positioning system, and Remote sensing) to explore soil fertility catastrophe under ecological restoration, discriminate whether soil fertility can self-develop, and propose adjustment of ecological restoration measures in the Zhuxi watershed of Changting County, Fujian Province, China, which is a typical representative of the red soil hilly region of China. The results show that: 1) the soil fertility is obviously improved through the four ecological restoration measures, which impels soil fertility catastrophe. Among 89 soil samples, catastrophic soil samples and stable soil samples account for 26(29.21%) and 63(70.79%) of the samples, respectively. The four ecological restoration measures are listed in the order lowquality forest improvement > arbor–bush–herb mixed plantation > orchard improvement > closing measures according to the proportions of catastrophic soil samples. A typical soil sample in Bashilihe that can self-develop is selected as the criterion to judge the upper lobe and lower lobe of soil fertility in the process surface of the Cusp catastrophe model. Twenty-six(29.21%) were in the middle lobe, 10(11.24%) were in the upper lobe, and 53(70.79%) were in the lower lobe. The catastrophic direction of 26 catastrophic soil samples is to the upper lobe according to soil and water loss change as well as fieldwork. There is a significant positive correlation of Δ with soil and water loss change, and the lower soil and water loss relates to higher catastrophic probability. 2) Soil fertility self-development could be regionalized as "Soil fertility can self-develop" whose area was 12.74 km2(28.33%) distributed mainly in the leftmost and rightmost parts, "Soil fertility tends to self-develop" whose area was 11.63 km2(25.89%) distributed mainly in the middle part, and "Soil fertility cannot self-develop" whose area was 20.58 km2(45.78%) distributed mainly between the above two types. 3) There is no need to take ecological restoration measures and excessive human interference should be avoided in the future in regions of "Soil fertility can self-develop" and "Soil fertility tends to self-develop," and ecological restoration measures should be taken in region of "Soil fertility cannot self-develop." 4) We suggest withdrawal and implementation of ecological restoration measures should be incorporated into the evaluation criteria of ecological restoration to avoid misuse of funds.
基金financially supported by the Gansu Province Key Research and Development Program (Grant No. 20YF8NA135)the Gansu Province Financial Special Project (Grant No. GSCZZ 20160909)the Industrial Support Program Project (Grant No. 2021CYZC15, No.2022CYZC-41)
文摘Methane(CH_(4))is an important greenhouse gas second only to CO_(2)in terms of its greenhouse effect.Vegetation plays an important role in controlling soil CH_(4)fluxes,but the spatial variability of soil CH_(4)fluxes during vegetation restoration in Loess Hilly Region(LHR)is not fully understood.The effects of different plant community types[Medicago sativa grassland(MS);Xanthoceras sorbifolium forestland(XS);Caragana korshinskii bushland(CK);Hippophae rhamnoides shrubland(HR);and Stipa bungeana grassland(SB)]on soil CH_(4)flux in LHR were studied via the static chamber technique.The results showed that the five plant community types were sinks of soil CH_(4)in LHR,the plant community type significantly affected the soil CH_(4)flux,and the average CH_(4)uptake from high to low was in SB,HR,CK,MS,and XS.During the whole study period,the soil CH_(4)flux showed similar interannual variation.The maximum absorption of soil CH_(4)appeared in the growing season,while the minimum appeared in winter.Soil CH_(4)uptake was positively correlated with soil temperature and soil moisture.Soil temperature and moisture are important controlling factors for the temporal variability of soil CH_(4)flux.In LHR,the Stipa bungeana grassland is the more suitable plant community type for reducing soil CH_(4)emissions.In the process of vegetation restoration in LHR,the soil CH_(4)absorption potential of different plant community types should be considered,ecological benefits should be taken into account,and vegetation more suitable for mitigating the greenhouse effect should be selected.
基金funded by the National Natural Science Foundation of China(32060301).
文摘Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.
基金This work was supported financially by the National Key Research and Development Plan Projects of China(2017YFC0504604).
文摘Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.
基金funded by Ministry of Science and Technology of China (Grant No.2011BAD31B03)Chinese Academy of Sciences(Grant No. KZCX2-XB3-09)Ministry of Environmental Protection of China (Grant No.2009ZX07014-002-06)
文摘The worldwide extension and intensification of farming during the last century has led to ecosystem degradation and caused a series of environmental problems.Conservation of ecosystem services in agricultural regions has been implemented by top-down government actions or initiated by resilience scientists in the developed countries,but little attention was paid in the developing countries,especially in some remote mountainous regions.The present paper presents a case study showing how local farmers obtained both maximal societal outcomes and agroecosystem conservation interests in the absence of distinct boundaries between agricultural and protected ecological areas in the densely populated purple-soiled hilly region of southwestern China.The local community(Yanting County) has developed a mosaic agricultural-forestry-fishery-stock breeding system with spatially targeted land uses,diverse agricultural productions and multiple ecological partnerships.It indicates that the local farmers have hereditarily perceived sound strategies on maximizing sustainable societal outcomes and optimizing tradeoffs among macro-market,state policy,new technological facility and ecological reinforcement.
基金National Natural Science Foundation of China No.40371051+1 种基金 Knowledge Innovation Project of Chinese Academy of Sciences No.KZCX1-6-2-6
文摘The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been regarded as a powerful measure for the ecological restoration in the Loess Plateau and the upper reaches of the Yangtze River. "Relieving and de-farming" (RD) and "rebuilding terrace and de-farming" (RTD) are two more mature ones among various de-farming modes. Taking the loess hilly-gully region as a case, this paper summarized the basic characteristics of RD and RTD modes, calculated the sizes of de-farming slope farmland, rebuilt terraces, enlarged garden plots and restored vegetation, and compared the differences of two modes in terms of de-farming area, ecological reestablishment index, investment demand amount and benefits. The results showed that RTD mode has many advantages, including suitable investment, sufficient grain supply and great benefits, and will be the best ecological reestablishment mode in the loess hilly-gully region, and RD mode which is being carried out in this region should be replaced by RTD mode as soon as possible.
基金Supported by"948"Project of the Ministry of Water Resources(2015-22)Key Technology R&D Program Project of Gansu Province(1204FKCA069)Key Scientific Research Project of Water Resources of Gansu Province(2012-255)
文摘Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.
基金funded by the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-SW-415,KZCX3-SW-426).
文摘Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly.
基金supported by the National Basic Research Program of China (2007CB407207)National Natural Science Foundation of China (30800888)
文摘As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.