Aqueous zinc ion batteries(ZIBs)with intrinsic safety have great potentials in portable devices,but suffer from limited cycling life mainly caused by serious dendrite growth and unavoidable side reactions of Zn anodes...Aqueous zinc ion batteries(ZIBs)with intrinsic safety have great potentials in portable devices,but suffer from limited cycling life mainly caused by serious dendrite growth and unavoidable side reactions of Zn anodes.Herein,graphene interpenetrated Zn(GiZn)hybrid foils are developed for dendrite-free and long-term Zn anodes for high-performance ZIBs.The GiZn anode is prepared by interfacial assembly of reduced graphene oxide(rGO)on the skeletons of zinc foams,followed by mechanical compression into hybrid foils and drying process.The presence of the rGO nanosheets in the GiZn hybrid foils provides abundant zincophilic sites to induce horizontal Zn deposition for Zn metal anodes without the growth of dendrites.Meanwhile,the uniform distribution of rGO nanosheets endows the hybrid foils with superior conductivity and wetting ability with electrolytes for reduced interfacial resistances.As a result,GiZn-based symmetric cells exhibit a small voltage hysteresis of 30.4 mV and remarkable areal capacity of 30 mAh cm^(-2)at 0.5 mA cm^(-2).Further,GiZn anodes also enable the corresponding aqueous Zn||MnO_(2)batteries with high capacity of 168.5 mAh g^(-1)at 8 C,superior to the counterpart with pure Zn foil anodes(72.7 mAh g^(-1)).Therefore,GiZn hybrid foil anodes will shed light on the rational construction of 2D material-interpenetrated Zn hybrid foil anodes for high-performance ZIBs.展开更多
Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,a...Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries.展开更多
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ...Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.展开更多
The effects of zinc deficiency on the serum cortisol and adrenocorticotrophic hormone (ACTH) concentration,and the cerebrum nitric oxide synthase (NOS) activity in rats were studied.Growing rats were allotted to three...The effects of zinc deficiency on the serum cortisol and adrenocorticotrophic hormone (ACTH) concentration,and the cerebrum nitric oxide synthase (NOS) activity in rats were studied.Growing rats were allotted to three groups,which were zinc deficiency (ZD),paired fed (PF) and zinc supplementation after feeding zinc deficient food for 21 days (ZS).The duration of feed test was 35 days.Compared with PF rats,serum cortisol concentration in ZD ones was significantly increased,whereas serum ACTH concentration and cerebrum NOS activity were significantly decreased.The results suggested that zinc might influence the metabolism of hypothalamic hypophysial adrenocortical axis and NOS.展开更多
The combinative effects of applied zinc (Zn) and soil moisture on the plant growth, Zn uptake, and the metabolism of reactive oxygen species (ROS) in maize (Zea mays L.) plants were examined through two pot expe...The combinative effects of applied zinc (Zn) and soil moisture on the plant growth, Zn uptake, and the metabolism of reactive oxygen species (ROS) in maize (Zea mays L.) plants were examined through two pot experiments under greenhouse conditions. Maize variety Zhongdan 9409 was used. In experiment 1, maize plants were grown in cumulic cinnamon soil with five Zn treatments (0, 3.0, 9.0, 27.0, and 81.0 mg Zn kg^-1 soil). Three treatments of soil moisture including serious drought, mild drought, and adequate water supply were set at 30-35%, 40-45%, and 70-75% (w/w) of soil saturated water content, respectively. Soil saturated water content was 36% (w/w). The dry matter weights of shoots were enhanced by Zn application and adequate water supply. There was no apparent difference in plant growth among Zn application rates from 3.0 to 81.0 mg Zn kg^-1 soil. The increases of plant growth and Zn uptake due to Zn application were found more significant under well-watered condition than under drying condition. In experiment 2, two levels of Zn (0 and 5.0 mg Zn kg^-1 soil) and soil moisture regimen (40-45% and 70-75% of soil saturated water content, respectively) were set. Zn deficiency or water stress resulted in higher concentrations of O2^- and malondiadehyde in the first fully expanded leaves. Zn deficiency lowered the activity of superoxide dismutase (SOD, EC 1.15.1.1) in leaves. Drought stress increased SOD activity in leaves regardless of Zn supply. The activity of guaiacol peroxidase (POD, ECI.11.1.11) was found to be enhanced by Zn supply only in well-watered leaves. Zinc deficiency or water stress had little effect on the activity of catalase (CAT, EC 1.11.1.6). The higher ROS level in early maize leaves due to water stress seemed not to be alleviated or lowered partially by Zn application. However, Zn fertilizer was recommended to apply to maize plants irrigated or supplied with adequate water, otherwise Zn deficiency would reduce the water use for plant biomass production.展开更多
The effect of zinc(Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs(root, stem, and leaf) and root exudates of two Moraceae plants(Broussonetia papyrifera and M...The effect of zinc(Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs(root, stem, and leaf) and root exudates of two Moraceae plants(Broussonetia papyrifera and Morus alba) were investigated. Two Moraceae plants were hydroponically grown and cultured in nutrient solution in four different treatments with 0.02 mM Zn or no Zn,combined with no or 10 mM bicarbonate. The variations of organic acids in different plant organs were similar to those of root exudates in the four treatments except B. papyrifera, which was in a treatment that was a combination of 0.02 mM Zn and no bicarbonate. The response characteristics in the production, translocation, and allocation of organic acids in the plant organs and root exudates varied with species and treatments. Organic acids in plant organs and root exudates increased under Zn-deficient conditions,excessive bicarbonate, or both. An increase of organic acids in the leaves resulted in an increase of root-exuded organic acids. B. papyrifera translocated more oxalate and citrate from the roots to the rhizosphere than M. alba under the dual influence of 10 mM bicarbonate and Zn deficiency. Organic acids of leaves may be derived from dark respiration and photorespiration. By comparison, organic acids in stems, roots, and root exudates may be derived from dark respiration and organic acid translocation from the leaves. These results provide evidence for the selective adaptation of plants to environments with low Zn levels or high bicarbonate levels such as a karst ecosystem.展开更多
The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompani...The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompanied by Zn deficiency in human populations. MicroRNAs (miRNAs) play important roles in the regulation of plant gene expression at the level of translation. Many miRNAs involved in the modulation of heavy metal toxicity responses in plants have been identiifed;however, the role of miRNAs in the plant Zn deifciency response is almost completely unknown. Using high-throughput Solexa sequencing, we identiifed several miRNAs that respond to Zn deifciency in Brassica juncea roots. At least 21 conserved candidate miRNA families, and 101 individual members within those families, were identiifed in both the control and the Zn-deifcient B. juncea roots. Among this, 15 miRNAs from 9 miRNA families were differentially expressed in the control and Zn-deifcient plants. Of the 15 differentially expressed miRNAs, 13 were up-regulated in the Zn-deifcient B. juncea roots, and only two, miR399b and miR845a, were down-regulated. Bioinformatics analysis indicated that these miRNAs were involved in modulating phytohormone response, plant growth and development, and abiotic stress responses in B. juncea roots. These data help to lay the foundation for further understanding of miRNA function in the regulation of the plant Zn deifciency response and its impact on plant growth and development.展开更多
Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabric...Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabrication of Zn(O,S) films. However they either require extreme conditions and high energy consumption for synthesis, or suffer from lack of controllability mainly due to the thermodynamic and kinetic distinction between Zn O and Zn S during film growth. Here we demonstrated an effective electrodeposition route to obtain high-quality Zn(O,S) thin films in a controllable manner. Importantly, tartaric acid was employed as a secondary complexing agent in the electrolyte to improve the film morphology, as well as to adjust other key properties such as composition and absorption. To elucidate the vital role that tartaric acid played, thermodynamic and kinetic processes of electrodeposition was investigated and discussed in detail. The accumulative contribution has shed light on further exploit of Zn(O,S) with tunable properties and optimization of the corresponding electrodeposition process, for the application in thin film solar cells.展开更多
Zinc(Zn) deficiency in animals became of interest until the 1950s.In this paper,progresses in researches on physiology of Zn deficiency in animals,phytate effect on bioavailability of Zn,and role of phytase in healing...Zinc(Zn) deficiency in animals became of interest until the 1950s.In this paper,progresses in researches on physiology of Zn deficiency in animals,phytate effect on bioavailability of Zn,and role of phytase in healing Zn deficiency of animals were reviewed.Several studies demonstrated that Zn is recycled via the pancreas;the problem of Zn deficiency was controlled by Zn homeostasis.The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency,and the critical molar ratio is 10.Phytate(inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds.Great improvement has been made in recent years on isolating and measuring phytate,and its structure is clear.Phytate is considered to reduce Zn bioavailability in animal.Phytase is the enzyme that hydrolyzes phytate and is present in yeast,rye bran,wheat bran,barley,triticale,and many bacteria and fungi.Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds.Therefore,using phytase as supplements,the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.展开更多
To determine the sufficiency and deficiency indices of soil available Zn by the Agro Services International (ASI) method (ASI-Zn) for Zn fertilizer recommendation in rice production in the alluvial soil of the coa...To determine the sufficiency and deficiency indices of soil available Zn by the Agro Services International (ASI) method (ASI-Zn) for Zn fertilizer recommendation in rice production in the alluvial soil of the coastal Yellow Sea, the relationship between relative rice yield and soil available ASI-Zn concentration was analyzed from a ten-field experiment with various soil test classes ranging from low to high fertility in 2005 and 2006, and nine Zn fertilizer application rates (0, 7.5 15, 22.5, 30, 37.5, 45, 52.5 and 60 kg Zn/ha) arranged at random with three replications in each field. There was a significant quadratic relationship between soil available ASI-Zn and rice yield, and a significant linear relationship between soil available ASI-Zn concentration and Zn fertilization rate. For rice variety Wuyujing 3, soil available ASI-Zn was deficient when the value was at lower than 1 mg Zn/L, low at 1 to 2 mg Zn/L, sufficient at 1 to 2 mg Zn/L, excessive at higher than 7.5 mg Zn/L. Thus, Zn fertilizer recommendation could be done according to the sufficiency and deficiency indices of soil ASI-Zn. For most of alluvial soils of the coastal Yellow Sea in the study, the available ASI-Zn was lower than 1 mg Zn/L, and then the optimum application rate of Zn fertilizer was about 20 kg Zn/ha.展开更多
Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, ...Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, densification, microstructure and a.c. electrical conductivity have been studied. Under the effect of changing the firing temperature and Zn content, high sintered Li-Zn ferrite bodies are achieved. More fine structure bodies having high electrical resistance are obtained at high Zn content展开更多
A two-dimensional(2D) 44 topological ZnⅡ coordination polymer {[Zn2Cl2(L)(4bpy)2]}∞(H2L = anthracene-9,10-dicarboxylic acid, 4bpy = 4,4ˊ-bipyridine) based on binuclear [Zn2Cl2] nodes has been synthesized an...A two-dimensional(2D) 44 topological ZnⅡ coordination polymer {[Zn2Cl2(L)(4bpy)2]}∞(H2L = anthracene-9,10-dicarboxylic acid, 4bpy = 4,4ˊ-bipyridine) based on binuclear [Zn2Cl2] nodes has been synthesized and characterized by IR, elemental analysis, X-ray powder diffraction and single-crystal X-ray diffraction analysis. Moreover, the luminescent properties of the correspon- ding compound have been briefly investigated.展开更多
BACKGROUND Dietary zinc deficiency has been shown to be associated with the development of esophageal cancer in humans,but the exact mechanism of action is not known AIM To observe the effects of dietary zinc deficien...BACKGROUND Dietary zinc deficiency has been shown to be associated with the development of esophageal cancer in humans,but the exact mechanism of action is not known AIM To observe the effects of dietary zinc deficiency on esophageal squamous cell proliferation.METHODS Thirty C57BL/6 mice were randomly divided into three groups:A zinc-sufficient(ZS)group,zinc-deficient(ZD)group,and zinc-replenished(ZR)group.For weeks 1–10,zinc levels in the mice diets were 30.66–30.89 mg/kg in the ZS group and 0.66–0.89 mg/kg in the ZD and ZR groups.During weeks 10–12,the ZR group was switched to the ZS diet;the other two groups had no changes in their diets.Changes in body weight,serum,and esophageal tissue zinc concentrations were assessed as well as differences in the expression of proliferating cell nuclear antigen(PCNA),mitogen-activated protein kinase p38(p38MAPK),nuclear factor kappa B(NF-κB)p105,NF-κB p65,and cyclooxygenase(COX)-2 proteins in the esophageal mucosa.RESULTS The body weight and zinc concentration in the serum and esophageal mucosa were significantly lower in the ZD and ZR groups than in the ZS group(P<0.05).In ZD mice,there was a marked proliferation of basal cells in the esophageal mucosa,resulting in a disturbance in the arrangement of basal cells in layers 2–4,a thickening of the squamous layer,and a significant increase in the expression of the above-mentioned five proteins involved in proliferation and inflammation in the esophageal mucosa.Two weeks after switching to the ZS diet,the serum zinc concentration in the ZR group increased,and the expression of PCNA,NF-κB p105,and COX-2 decreased,but the concentration of zinc in the esophageal mucosa and the structure of the esophageal mucosa did not display any significant changes CONCLUSION The ZD diet decreased the growth rate and promoted the proliferation of esophageal squamous cells in mice.The mechanism of proliferation was related to the induced overexpression of COX-2,P38,PCNA,and NF-κB(p105 and p65),and the ZR diet reduced the expression of PCNA,NF-κB p105,and COX-2,thereby reversing this process.展开更多
Zinc(Zn)deficiency is the most widespread micronutrient deficiency,affecting yield and quality of crops worldwide.Identifying genes associated with Zn-deficiency tolerance in maize is a basis for elucidating its genet...Zinc(Zn)deficiency is the most widespread micronutrient deficiency,affecting yield and quality of crops worldwide.Identifying genes associated with Zn-deficiency tolerance in maize is a basis for elucidating its genetic mechanism.A K22×CI7 recombinant inbred population consisting of 210 lines and an association panel of 508 lines were used to identify genetic loci influencing Zn-deficiency tolerance.Under-Zn and-Zn/CK conditions,15 quantitative trait loci(QTL)were detected,each explaining 5.7%-12.6%of phenotypic variation.Sixty-one significant single-nucleotide polymorphisms(SNPs)were identified at P<10^(-5)by genome-wide association study(GWAS),accounting for 5%-14%of phenotypic variation.Among respectively 198 and 183 candidate genes identified within the QTL regions and the 100-kb regions flanking these significant SNPs,12 were associated with Zn-deficiency tolerance.Among these candidate genes,four genes associated with hormone signaling in response to Zn-deficiency stress were co-localized with QTL or SNPs,including the genes involved in the auxin(ZmARF7),and ethylene(ZmETR5,ZmESR14,and ZmEIN2)signaling pathways.Three candidate genes were identified as being responsible for Zn transport,including ZmNAS3 detected by GWAS,ZmVIT and ZmYSL11 detected by QTL mapping.Expression of ZmYSL11 was up-regulated in Zn-deficient shoots.Four candidate genes that displayed different expression patterns in response to Zn deficiency were detected in the regions overlapping peak GWAS signals,and the haplotypes for each candidate gene were further analyzed.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Rechargeable aqueous zinc(Zn) batteries hold great promise for large-scale energy storage,but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance.Herein,we design a ...Rechargeable aqueous zinc(Zn) batteries hold great promise for large-scale energy storage,but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance.Herein,we design a cell-nucleus structured electrolyte by introducing low-polarity 1,2-dimethoxyethane(DME) into dilute 1 M zinc trifluoromethanesulfonate(Zn(OTf)_(2)) aqueous solution,which features an OTf--rich Zn2^(+)-primary solvation sheath(PSS,inner nucleus) and the DMEmodulated Zn^(2+)-outer solvation sheath(outer layer).We find that DME additives with a low dosage do not participate in the Zn2+-PSS but reinforce the Zn-OTf-coordination,which guarantees good reaction kinetics under ultralow temperatures.Moreover,DME breaks the original H-bonding network of H2O,depressing the freezing point of electrolyte to-52.4℃.Such a cell-nucleus-solvation structure suppresses the H_(2)O-induced side reactions and forms an anion-derived solid electrolyte interphase on Zn and can be readily extended to 1,2-diethoxyethane.The as-designed electrolyte enables the Zn electrode deep cycling stability over 3500 h with a high depth-of-discharge of 51.3% and endows the Zn‖V_(2)O_(5)full battery with stable cycling over 1000 cycles at 40℃.This work would inspire the solvation structure design for low-temperature aqueous batteries.展开更多
基金supported by the National Natural Science Foundation of China(Grants.22125903,51872283)Natural Science Foundation of Liaoning Province(2020-MS-095)+6 种基金the Liao Ning Revitalization Talents Program(XLYC2007129)Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019)DICP(DICP ZZBS201802,DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)the fund of the State Key Laboratory of Catalysis in DICP(N-21-03)the Fundamental Research Funds for the Central Universities of China(N2105008).
文摘Aqueous zinc ion batteries(ZIBs)with intrinsic safety have great potentials in portable devices,but suffer from limited cycling life mainly caused by serious dendrite growth and unavoidable side reactions of Zn anodes.Herein,graphene interpenetrated Zn(GiZn)hybrid foils are developed for dendrite-free and long-term Zn anodes for high-performance ZIBs.The GiZn anode is prepared by interfacial assembly of reduced graphene oxide(rGO)on the skeletons of zinc foams,followed by mechanical compression into hybrid foils and drying process.The presence of the rGO nanosheets in the GiZn hybrid foils provides abundant zincophilic sites to induce horizontal Zn deposition for Zn metal anodes without the growth of dendrites.Meanwhile,the uniform distribution of rGO nanosheets endows the hybrid foils with superior conductivity and wetting ability with electrolytes for reduced interfacial resistances.As a result,GiZn-based symmetric cells exhibit a small voltage hysteresis of 30.4 mV and remarkable areal capacity of 30 mAh cm^(-2)at 0.5 mA cm^(-2).Further,GiZn anodes also enable the corresponding aqueous Zn||MnO_(2)batteries with high capacity of 168.5 mAh g^(-1)at 8 C,superior to the counterpart with pure Zn foil anodes(72.7 mAh g^(-1)).Therefore,GiZn hybrid foil anodes will shed light on the rational construction of 2D material-interpenetrated Zn hybrid foil anodes for high-performance ZIBs.
文摘Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries.
基金supported by the Key Program of Natural Science Foundation of Gansu Province (23JRRA789)the Major Science and Technology Project of Gansu Province (22ZD6GA008)。
文摘Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.
基金SupportedbyNationalNaturalScienceFoundationofChina (No 3970 0 12 0 )andbyNationalEducationMinistrygrants (No A9410 7)
文摘The effects of zinc deficiency on the serum cortisol and adrenocorticotrophic hormone (ACTH) concentration,and the cerebrum nitric oxide synthase (NOS) activity in rats were studied.Growing rats were allotted to three groups,which were zinc deficiency (ZD),paired fed (PF) and zinc supplementation after feeding zinc deficient food for 21 days (ZS).The duration of feed test was 35 days.Compared with PF rats,serum cortisol concentration in ZD ones was significantly increased,whereas serum ACTH concentration and cerebrum NOS activity were significantly decreased.The results suggested that zinc might influence the metabolism of hypothalamic hypophysial adrenocortical axis and NOS.
文摘The combinative effects of applied zinc (Zn) and soil moisture on the plant growth, Zn uptake, and the metabolism of reactive oxygen species (ROS) in maize (Zea mays L.) plants were examined through two pot experiments under greenhouse conditions. Maize variety Zhongdan 9409 was used. In experiment 1, maize plants were grown in cumulic cinnamon soil with five Zn treatments (0, 3.0, 9.0, 27.0, and 81.0 mg Zn kg^-1 soil). Three treatments of soil moisture including serious drought, mild drought, and adequate water supply were set at 30-35%, 40-45%, and 70-75% (w/w) of soil saturated water content, respectively. Soil saturated water content was 36% (w/w). The dry matter weights of shoots were enhanced by Zn application and adequate water supply. There was no apparent difference in plant growth among Zn application rates from 3.0 to 81.0 mg Zn kg^-1 soil. The increases of plant growth and Zn uptake due to Zn application were found more significant under well-watered condition than under drying condition. In experiment 2, two levels of Zn (0 and 5.0 mg Zn kg^-1 soil) and soil moisture regimen (40-45% and 70-75% of soil saturated water content, respectively) were set. Zn deficiency or water stress resulted in higher concentrations of O2^- and malondiadehyde in the first fully expanded leaves. Zn deficiency lowered the activity of superoxide dismutase (SOD, EC 1.15.1.1) in leaves. Drought stress increased SOD activity in leaves regardless of Zn supply. The activity of guaiacol peroxidase (POD, ECI.11.1.11) was found to be enhanced by Zn supply only in well-watered leaves. Zinc deficiency or water stress had little effect on the activity of catalase (CAT, EC 1.11.1.6). The higher ROS level in early maize leaves due to water stress seemed not to be alleviated or lowered partially by Zn application. However, Zn fertilizer was recommended to apply to maize plants irrigated or supplied with adequate water, otherwise Zn deficiency would reduce the water use for plant biomass production.
基金funded by the National Key Basic Research Program of China under Grant No. 2013CB956701the National Natural Science Foundation of China under Grant No. 31070365Funded by talents introduction of Anqing Normal University (No. 14000100032)
文摘The effect of zinc(Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs(root, stem, and leaf) and root exudates of two Moraceae plants(Broussonetia papyrifera and Morus alba) were investigated. Two Moraceae plants were hydroponically grown and cultured in nutrient solution in four different treatments with 0.02 mM Zn or no Zn,combined with no or 10 mM bicarbonate. The variations of organic acids in different plant organs were similar to those of root exudates in the four treatments except B. papyrifera, which was in a treatment that was a combination of 0.02 mM Zn and no bicarbonate. The response characteristics in the production, translocation, and allocation of organic acids in the plant organs and root exudates varied with species and treatments. Organic acids in plant organs and root exudates increased under Zn-deficient conditions,excessive bicarbonate, or both. An increase of organic acids in the leaves resulted in an increase of root-exuded organic acids. B. papyrifera translocated more oxalate and citrate from the roots to the rhizosphere than M. alba under the dual influence of 10 mM bicarbonate and Zn deficiency. Organic acids of leaves may be derived from dark respiration and photorespiration. By comparison, organic acids in stems, roots, and root exudates may be derived from dark respiration and organic acid translocation from the leaves. These results provide evidence for the selective adaptation of plants to environments with low Zn levels or high bicarbonate levels such as a karst ecosystem.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2EW-Q-25)the National Natural Sciences Foundation of China(31170228+4 种基金31272239)the Key Project of State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography of Chinese Academy of SciencesHebei Province Natural Sciences Foundation for Distinguished Young ScientistsChina (C2013503042)
文摘The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompanied by Zn deficiency in human populations. MicroRNAs (miRNAs) play important roles in the regulation of plant gene expression at the level of translation. Many miRNAs involved in the modulation of heavy metal toxicity responses in plants have been identiifed;however, the role of miRNAs in the plant Zn deifciency response is almost completely unknown. Using high-throughput Solexa sequencing, we identiifed several miRNAs that respond to Zn deifciency in Brassica juncea roots. At least 21 conserved candidate miRNA families, and 101 individual members within those families, were identiifed in both the control and the Zn-deifcient B. juncea roots. Among this, 15 miRNAs from 9 miRNA families were differentially expressed in the control and Zn-deifcient plants. Of the 15 differentially expressed miRNAs, 13 were up-regulated in the Zn-deifcient B. juncea roots, and only two, miR399b and miR845a, were down-regulated. Bioinformatics analysis indicated that these miRNAs were involved in modulating phytohormone response, plant growth and development, and abiotic stress responses in B. juncea roots. These data help to lay the foundation for further understanding of miRNA function in the regulation of the plant Zn deifciency response and its impact on plant growth and development.
基金funding support from the National Natural Science Foundation of China(21371016)funding support from Young Talent Thousand Program
文摘Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabrication of Zn(O,S) films. However they either require extreme conditions and high energy consumption for synthesis, or suffer from lack of controllability mainly due to the thermodynamic and kinetic distinction between Zn O and Zn S during film growth. Here we demonstrated an effective electrodeposition route to obtain high-quality Zn(O,S) thin films in a controllable manner. Importantly, tartaric acid was employed as a secondary complexing agent in the electrolyte to improve the film morphology, as well as to adjust other key properties such as composition and absorption. To elucidate the vital role that tartaric acid played, thermodynamic and kinetic processes of electrodeposition was investigated and discussed in detail. The accumulative contribution has shed light on further exploit of Zn(O,S) with tunable properties and optimization of the corresponding electrodeposition process, for the application in thin film solar cells.
文摘Zinc(Zn) deficiency in animals became of interest until the 1950s.In this paper,progresses in researches on physiology of Zn deficiency in animals,phytate effect on bioavailability of Zn,and role of phytase in healing Zn deficiency of animals were reviewed.Several studies demonstrated that Zn is recycled via the pancreas;the problem of Zn deficiency was controlled by Zn homeostasis.The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency,and the critical molar ratio is 10.Phytate(inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds.Great improvement has been made in recent years on isolating and measuring phytate,and its structure is clear.Phytate is considered to reduce Zn bioavailability in animal.Phytase is the enzyme that hydrolyzes phytate and is present in yeast,rye bran,wheat bran,barley,triticale,and many bacteria and fungi.Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds.Therefore,using phytase as supplements,the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.
文摘To determine the sufficiency and deficiency indices of soil available Zn by the Agro Services International (ASI) method (ASI-Zn) for Zn fertilizer recommendation in rice production in the alluvial soil of the coastal Yellow Sea, the relationship between relative rice yield and soil available ASI-Zn concentration was analyzed from a ten-field experiment with various soil test classes ranging from low to high fertility in 2005 and 2006, and nine Zn fertilizer application rates (0, 7.5 15, 22.5, 30, 37.5, 45, 52.5 and 60 kg Zn/ha) arranged at random with three replications in each field. There was a significant quadratic relationship between soil available ASI-Zn and rice yield, and a significant linear relationship between soil available ASI-Zn concentration and Zn fertilization rate. For rice variety Wuyujing 3, soil available ASI-Zn was deficient when the value was at lower than 1 mg Zn/L, low at 1 to 2 mg Zn/L, sufficient at 1 to 2 mg Zn/L, excessive at higher than 7.5 mg Zn/L. Thus, Zn fertilizer recommendation could be done according to the sufficiency and deficiency indices of soil ASI-Zn. For most of alluvial soils of the coastal Yellow Sea in the study, the available ASI-Zn was lower than 1 mg Zn/L, and then the optimum application rate of Zn fertilizer was about 20 kg Zn/ha.
文摘Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, densification, microstructure and a.c. electrical conductivity have been studied. Under the effect of changing the firing temperature and Zn content, high sintered Li-Zn ferrite bodies are achieved. More fine structure bodies having high electrical resistance are obtained at high Zn content
基金Supported by the key project of Science,the Technology Department of Henan province(No.112102210371)the science and technology research projects of Education Department of Henan province(No.12B150003)
文摘A two-dimensional(2D) 44 topological ZnⅡ coordination polymer {[Zn2Cl2(L)(4bpy)2]}∞(H2L = anthracene-9,10-dicarboxylic acid, 4bpy = 4,4ˊ-bipyridine) based on binuclear [Zn2Cl2] nodes has been synthesized and characterized by IR, elemental analysis, X-ray powder diffraction and single-crystal X-ray diffraction analysis. Moreover, the luminescent properties of the correspon- ding compound have been briefly investigated.
文摘BACKGROUND Dietary zinc deficiency has been shown to be associated with the development of esophageal cancer in humans,but the exact mechanism of action is not known AIM To observe the effects of dietary zinc deficiency on esophageal squamous cell proliferation.METHODS Thirty C57BL/6 mice were randomly divided into three groups:A zinc-sufficient(ZS)group,zinc-deficient(ZD)group,and zinc-replenished(ZR)group.For weeks 1–10,zinc levels in the mice diets were 30.66–30.89 mg/kg in the ZS group and 0.66–0.89 mg/kg in the ZD and ZR groups.During weeks 10–12,the ZR group was switched to the ZS diet;the other two groups had no changes in their diets.Changes in body weight,serum,and esophageal tissue zinc concentrations were assessed as well as differences in the expression of proliferating cell nuclear antigen(PCNA),mitogen-activated protein kinase p38(p38MAPK),nuclear factor kappa B(NF-κB)p105,NF-κB p65,and cyclooxygenase(COX)-2 proteins in the esophageal mucosa.RESULTS The body weight and zinc concentration in the serum and esophageal mucosa were significantly lower in the ZD and ZR groups than in the ZS group(P<0.05).In ZD mice,there was a marked proliferation of basal cells in the esophageal mucosa,resulting in a disturbance in the arrangement of basal cells in layers 2–4,a thickening of the squamous layer,and a significant increase in the expression of the above-mentioned five proteins involved in proliferation and inflammation in the esophageal mucosa.Two weeks after switching to the ZS diet,the serum zinc concentration in the ZR group increased,and the expression of PCNA,NF-κB p105,and COX-2 decreased,but the concentration of zinc in the esophageal mucosa and the structure of the esophageal mucosa did not display any significant changes CONCLUSION The ZD diet decreased the growth rate and promoted the proliferation of esophageal squamous cells in mice.The mechanism of proliferation was related to the induced overexpression of COX-2,P38,PCNA,and NF-κB(p105 and p65),and the ZR diet reduced the expression of PCNA,NF-κB p105,and COX-2,thereby reversing this process.
基金supported by the National Key Research and Development Program of China(2016YFD0200405)。
文摘Zinc(Zn)deficiency is the most widespread micronutrient deficiency,affecting yield and quality of crops worldwide.Identifying genes associated with Zn-deficiency tolerance in maize is a basis for elucidating its genetic mechanism.A K22×CI7 recombinant inbred population consisting of 210 lines and an association panel of 508 lines were used to identify genetic loci influencing Zn-deficiency tolerance.Under-Zn and-Zn/CK conditions,15 quantitative trait loci(QTL)were detected,each explaining 5.7%-12.6%of phenotypic variation.Sixty-one significant single-nucleotide polymorphisms(SNPs)were identified at P<10^(-5)by genome-wide association study(GWAS),accounting for 5%-14%of phenotypic variation.Among respectively 198 and 183 candidate genes identified within the QTL regions and the 100-kb regions flanking these significant SNPs,12 were associated with Zn-deficiency tolerance.Among these candidate genes,four genes associated with hormone signaling in response to Zn-deficiency stress were co-localized with QTL or SNPs,including the genes involved in the auxin(ZmARF7),and ethylene(ZmETR5,ZmESR14,and ZmEIN2)signaling pathways.Three candidate genes were identified as being responsible for Zn transport,including ZmNAS3 detected by GWAS,ZmVIT and ZmYSL11 detected by QTL mapping.Expression of ZmYSL11 was up-regulated in Zn-deficient shoots.Four candidate genes that displayed different expression patterns in response to Zn deficiency were detected in the regions overlapping peak GWAS signals,and the haplotypes for each candidate gene were further analyzed.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金supported by the National Natural Science Foundation of China (21925503, 21871149, 21835004, and 22075067)the Ministry of Education of China (B12015)+2 种基金Haihe Laboratory of Sustainable Chemical Transformations (CYZC202110)Hebei Natural Science Foundation (B2020201001)the Fundamental Research Funds for the Central Universities,Nankai University(020-63201046)。
文摘Rechargeable aqueous zinc(Zn) batteries hold great promise for large-scale energy storage,but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance.Herein,we design a cell-nucleus structured electrolyte by introducing low-polarity 1,2-dimethoxyethane(DME) into dilute 1 M zinc trifluoromethanesulfonate(Zn(OTf)_(2)) aqueous solution,which features an OTf--rich Zn2^(+)-primary solvation sheath(PSS,inner nucleus) and the DMEmodulated Zn^(2+)-outer solvation sheath(outer layer).We find that DME additives with a low dosage do not participate in the Zn2+-PSS but reinforce the Zn-OTf-coordination,which guarantees good reaction kinetics under ultralow temperatures.Moreover,DME breaks the original H-bonding network of H2O,depressing the freezing point of electrolyte to-52.4℃.Such a cell-nucleus-solvation structure suppresses the H_(2)O-induced side reactions and forms an anion-derived solid electrolyte interphase on Zn and can be readily extended to 1,2-diethoxyethane.The as-designed electrolyte enables the Zn electrode deep cycling stability over 3500 h with a high depth-of-discharge of 51.3% and endows the Zn‖V_(2)O_(5)full battery with stable cycling over 1000 cycles at 40℃.This work would inspire the solvation structure design for low-temperature aqueous batteries.