Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conduc...Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance.展开更多
The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investi...The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.展开更多
A convenient and environmentally benign method for reducing the carbonyl group in hydroxy- and amino- 9,10-anthracenediones, ortho (or para) acyl phenols and acyl anilines to a methylene group by zinc powder in an a...A convenient and environmentally benign method for reducing the carbonyl group in hydroxy- and amino- 9,10-anthracenediones, ortho (or para) acyl phenols and acyl anilines to a methylene group by zinc powder in an aqueous sodium hydroxide solution was reported. Based on theoretical calculations using the density functional theory (DFT), the mechanism of these reduction reactions was postulated. This mechanism can be applied to help predicting the reduced products of aryl ketones (or aldehydes) in an alkaline solution.展开更多
Zinc powder electrodeposited from suspension bath has higher corrosion resistance than that from conventional bath. The results of X ray, SEM and EIS (Electrochem. Impedance Spectrum) indicated that the microstructur...Zinc powder electrodeposited from suspension bath has higher corrosion resistance than that from conventional bath. The results of X ray, SEM and EIS (Electrochem. Impedance Spectrum) indicated that the microstructures of zinc powder could be modified according to the kinds of suspension species. Suspension of TiO 2, SiO 2, In 2O 3, PbO 2 and SnO 2 could obviously improve the polarization resistance of zinc powder anodes in 5 mol/L KOH solution.展开更多
Mercury free zinc alloy powder were electrodeposited from alkaline solution. Additives containing lead, indium or bismuth were added in the electrolyte and zinc powders with corresponding compositions were obtained....Mercury free zinc alloy powder were electrodeposited from alkaline solution. Additives containing lead, indium or bismuth were added in the electrolyte and zinc powders with corresponding compositions were obtained. The relations between adding amounts of additives and the contents of corresponding compositions in zinc powder are not linear. Aluminum and calcium cannot be co deposited with zinc. Electrodeposition effectively reduced the contents of harmful impurities. Gas evolution of electrodeposited Zn Pb In Bi alloy powder was less than that of atomized mercury free alloy powder.展开更多
This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other...This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other characterization techniques were applied to examine the influence of the ultrasonic power on the sonochemical growth of Y(OH)3 microparticles in direct contact with zinc powder.Electrochemical properties of zinc electrodes containing Y(OH)3 microparticles were discussed through the measurement...展开更多
基金Project(2016YFB1100103)supported by the National Key Research and Development Program of ChinaProject(KC1703004)supported by the Science and Technology Planning Project of Changsha City,ChinaProject(2018ZZTS127)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance.
文摘The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.
基金Project supported by the Science Foundation of Jiangsu Province of China (No. BK2004085) and the National Natural Science Foundation of China (No. 20372032).
文摘A convenient and environmentally benign method for reducing the carbonyl group in hydroxy- and amino- 9,10-anthracenediones, ortho (or para) acyl phenols and acyl anilines to a methylene group by zinc powder in an aqueous sodium hydroxide solution was reported. Based on theoretical calculations using the density functional theory (DFT), the mechanism of these reduction reactions was postulated. This mechanism can be applied to help predicting the reduced products of aryl ketones (or aldehydes) in an alkaline solution.
文摘Zinc powder electrodeposited from suspension bath has higher corrosion resistance than that from conventional bath. The results of X ray, SEM and EIS (Electrochem. Impedance Spectrum) indicated that the microstructures of zinc powder could be modified according to the kinds of suspension species. Suspension of TiO 2, SiO 2, In 2O 3, PbO 2 and SnO 2 could obviously improve the polarization resistance of zinc powder anodes in 5 mol/L KOH solution.
文摘Mercury free zinc alloy powder were electrodeposited from alkaline solution. Additives containing lead, indium or bismuth were added in the electrolyte and zinc powders with corresponding compositions were obtained. The relations between adding amounts of additives and the contents of corresponding compositions in zinc powder are not linear. Aluminum and calcium cannot be co deposited with zinc. Electrodeposition effectively reduced the contents of harmful impurities. Gas evolution of electrodeposited Zn Pb In Bi alloy powder was less than that of atomized mercury free alloy powder.
基金supported by the Innovation Foundation of BUAA for Ph. D Graduates Provided by Beihang University in China
文摘This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other characterization techniques were applied to examine the influence of the ultrasonic power on the sonochemical growth of Y(OH)3 microparticles in direct contact with zinc powder.Electrochemical properties of zinc electrodes containing Y(OH)3 microparticles were discussed through the measurement...