In order to improve the properties of the nickel?zinc battery and study the effects of the additives on performance of zinc electrode, 3 levels and 4 factors (acetylene black, Bi2O3, PbO, Ca[Zn(OH)3]2·2H2O coated...In order to improve the properties of the nickel?zinc battery and study the effects of the additives on performance of zinc electrode, 3 levels and 4 factors (acetylene black, Bi2O3, PbO, Ca[Zn(OH)3]2·2H2O coated by La(OH)3 ) that affect the zinc electrode were tested with orthogonal design experiments. The charge?discharge experiments of zinc electrode made up of only zinc oxide were done in 20% KOH solution to investigate the function of the additive. In order to better understand the discharge capability attenuation of electrode, the ratios of zinc to calcium in the worst sample and the best sample of the orthogonal design test were analyzed. The samples were characterized by charge?discharge cycling, phase structure analysis, cyclic voltammetry and X-ray diffraction. Experimental evidences indicate that the optimum ratio of electrode additive is as follows: 0.02 g acetylene black, 0.5 g Bi2O3, 0.3 g PbO and 0.2 g Ca[Zn(OH)3]2·2H2O coated with La(OH)3 in 5 g sample.展开更多
The influence of 40 kHz ultrasound radiation on the passivation behavior of zinc in 7 M KOH is presented. The results of potentiodynamic and potentiostatic measurements combined with the current oscillation caused by ...The influence of 40 kHz ultrasound radiation on the passivation behavior of zinc in 7 M KOH is presented. The results of potentiodynamic and potentiostatic measurements combined with the current oscillation caused by the irradiation were examined to explain the mechanism and the sequence of formation of the oxide films during passivation. In this study, sonication was also used to investigate both effects of the passivation duration and passivation potential on the structure of the oxide layers; the adherence of the layers was found to depend strongly on both parameters. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis of the zinc surface provided complementary information on the oxide layer composition and structure.展开更多
A new additive of sodium hexametaphosphate (SHMP) was introduced to the paste of zinc electrode, with the purpose of preventing the zinc active materials from agglomerating and improving the stability of batteries. ...A new additive of sodium hexametaphosphate (SHMP) was introduced to the paste of zinc electrode, with the purpose of preventing the zinc active materials from agglomerating and improving the stability of batteries. The properties of the zinc electrodes were characterized by scanning electron microscopy (SEM), constant current charge/discharge measurement, self-discharge test and hydrogen collection experiment. The photographs of zinc electrode show that SHMP can significantly break up the agglomeration, uniforrnize the particle distribution and increase the surface area, which are advantageous to improve the electrochemical performance of zinc electrode. The experimental battery shows a 97 times cycling life and a 30.2% remaining capacity after 4 d storage. The hydrogen collection experimental results indicate that the SHMP can decrease the ratio of hydrogen evolution. Therefore, the corrosion of zinc electrode is suppressed and the charge/discharge efficiency is enhanced.展开更多
In this article, the electrochemical performance of the electrodes of zinc polycrystal, Zn(002) and Zn(100) single crystals were studied by the Tafel line extrapolation of the potentio-dynamic polarization curves,...In this article, the electrochemical performance of the electrodes of zinc polycrystal, Zn(002) and Zn(100) single crystals were studied by the Tafel line extrapolation of the potentio-dynamic polarization curves, the cyclic voltammetry and the charge/discharge experiment. The results shows that in 6.0 mol·L^-1 KOH solution the corrosion rate of Zn polycrystal, Zn(100) and Zn(002) single crystals decreases in turn; and the reversibility and the charge/discharge performance of Zn single crystal was superior to Zn polycrystal. The dendrite growth of the surface of Zn polycrvstal was easier than Zn single crystal during the stages of charge/discharge.展开更多
A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks ...A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.展开更多
文摘In order to improve the properties of the nickel?zinc battery and study the effects of the additives on performance of zinc electrode, 3 levels and 4 factors (acetylene black, Bi2O3, PbO, Ca[Zn(OH)3]2·2H2O coated by La(OH)3 ) that affect the zinc electrode were tested with orthogonal design experiments. The charge?discharge experiments of zinc electrode made up of only zinc oxide were done in 20% KOH solution to investigate the function of the additive. In order to better understand the discharge capability attenuation of electrode, the ratios of zinc to calcium in the worst sample and the best sample of the orthogonal design test were analyzed. The samples were characterized by charge?discharge cycling, phase structure analysis, cyclic voltammetry and X-ray diffraction. Experimental evidences indicate that the optimum ratio of electrode additive is as follows: 0.02 g acetylene black, 0.5 g Bi2O3, 0.3 g PbO and 0.2 g Ca[Zn(OH)3]2·2H2O coated with La(OH)3 in 5 g sample.
文摘The influence of 40 kHz ultrasound radiation on the passivation behavior of zinc in 7 M KOH is presented. The results of potentiodynamic and potentiostatic measurements combined with the current oscillation caused by the irradiation were examined to explain the mechanism and the sequence of formation of the oxide films during passivation. In this study, sonication was also used to investigate both effects of the passivation duration and passivation potential on the structure of the oxide layers; the adherence of the layers was found to depend strongly on both parameters. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis of the zinc surface provided complementary information on the oxide layer composition and structure.
基金Project(2006BAE03B03) supported by the National Key Technologies Research and Development Program of China
文摘A new additive of sodium hexametaphosphate (SHMP) was introduced to the paste of zinc electrode, with the purpose of preventing the zinc active materials from agglomerating and improving the stability of batteries. The properties of the zinc electrodes were characterized by scanning electron microscopy (SEM), constant current charge/discharge measurement, self-discharge test and hydrogen collection experiment. The photographs of zinc electrode show that SHMP can significantly break up the agglomeration, uniforrnize the particle distribution and increase the surface area, which are advantageous to improve the electrochemical performance of zinc electrode. The experimental battery shows a 97 times cycling life and a 30.2% remaining capacity after 4 d storage. The hydrogen collection experimental results indicate that the SHMP can decrease the ratio of hydrogen evolution. Therefore, the corrosion of zinc electrode is suppressed and the charge/discharge efficiency is enhanced.
文摘In this article, the electrochemical performance of the electrodes of zinc polycrystal, Zn(002) and Zn(100) single crystals were studied by the Tafel line extrapolation of the potentio-dynamic polarization curves, the cyclic voltammetry and the charge/discharge experiment. The results shows that in 6.0 mol·L^-1 KOH solution the corrosion rate of Zn polycrystal, Zn(100) and Zn(002) single crystals decreases in turn; and the reversibility and the charge/discharge performance of Zn single crystal was superior to Zn polycrystal. The dendrite growth of the surface of Zn polycrvstal was easier than Zn single crystal during the stages of charge/discharge.
基金financially supported by the National Natural Science Foundation of China(Nos.21207099,21273162,21473122)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.