The plant hormone auxin plays a crucial role in lateral root development. To better understand the rnolecular mechanisms underlying lateral root formation, an auxin-responsive gene OsCYP2 (Oso2g0121300) was characte...The plant hormone auxin plays a crucial role in lateral root development. To better understand the rnolecular mechanisms underlying lateral root formation, an auxin-responsive gene OsCYP2 (Oso2g0121300) was characterized from rice. Compared to the wild type, OsCYP2-RNAi (RNA interference) lines exhibited distinctive defects in lateral root development. Yeast two-hybrid and glutathione S-transferase puIl-down results confirmed that OsCYP2 interacted with a C2HC-type zinc finger protein (OsZFP, O501g0252900) which is located in the rice nucleus. T2OsZFP-RNAi lines had significantly fewer lateral roots than did wild-type plants, which suggests a role for OsCYP2 and OsZFP in regulating lateral root development.Quantitative real-time polymerase chain reaction showed that the expression of certain Aux/IAA (auxin/indole-3- acetic acid) genes was altered in OsCYP2- and OsZFP-RNAi lines in response to IAA. These findings imply that OsCYP2 and OsZFP participate in IAA signal pathways controlling lateral root development. More importantly, OslAA11 showed functional redundancy not only in OsCYP2-RNAi lines but also in OsZFP-RNAi lines, which provides important clues for the elucidation of mechanisms controlling lateral root development in response to auxin.展开更多
Non-alcoholic fatty liver disease(NAFLD)is a common chronic disease characterized by excessive fat accumulation in hepatocytes in the absence of alcohol consumption.Modern trends towards excessive calorie intake and s...Non-alcoholic fatty liver disease(NAFLD)is a common chronic disease characterized by excessive fat accumulation in hepatocytes in the absence of alcohol consumption.Modern trends towards excessive calorie intake and sedentary life styles have increased the prevalence of NAFLD accompanied by obesity and type 2 diabetes.However,the molecular mechanisms underlying the initiation and progression of NAFLD are not clear.Zinc finger proteins(ZFPs)are a superfamily of metalloproteins that contain zinc finger motifs.ZFPs play diverse physiological roles in tissue homeostasis and also contribute to many pathological conditions,including metabolic,cardiovascular,and neurodegenerative diseases and various types of cancer.In this review,we highlight our current knowledge of several ZFPs that play critical roles in the progression of NAFLD,describe their mechanistic functional networks,and discuss the potential for ZFPs as therapeutic targets for NAFLD.展开更多
基金supported by the Special Fund for Agroscientific Research in the Public Interest(201303022)National Natural Science Foundation of China(31301272,31570434)+1 种基金the Fund from Zhejiang A&F University(2013FR022)Zhejiang Provincial Top Key Discipline of Biology and its Open Foundation(2015D19)
文摘The plant hormone auxin plays a crucial role in lateral root development. To better understand the rnolecular mechanisms underlying lateral root formation, an auxin-responsive gene OsCYP2 (Oso2g0121300) was characterized from rice. Compared to the wild type, OsCYP2-RNAi (RNA interference) lines exhibited distinctive defects in lateral root development. Yeast two-hybrid and glutathione S-transferase puIl-down results confirmed that OsCYP2 interacted with a C2HC-type zinc finger protein (OsZFP, O501g0252900) which is located in the rice nucleus. T2OsZFP-RNAi lines had significantly fewer lateral roots than did wild-type plants, which suggests a role for OsCYP2 and OsZFP in regulating lateral root development.Quantitative real-time polymerase chain reaction showed that the expression of certain Aux/IAA (auxin/indole-3- acetic acid) genes was altered in OsCYP2- and OsZFP-RNAi lines in response to IAA. These findings imply that OsCYP2 and OsZFP participate in IAA signal pathways controlling lateral root development. More importantly, OslAA11 showed functional redundancy not only in OsCYP2-RNAi lines but also in OsZFP-RNAi lines, which provides important clues for the elucidation of mechanisms controlling lateral root development in response to auxin.
基金This work was supported by funds from the National Natural Science Foundation of China(31770840 to X.Ma and 31800989 to L.Xu)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(TP2017042 to X.Ma)。
文摘Non-alcoholic fatty liver disease(NAFLD)is a common chronic disease characterized by excessive fat accumulation in hepatocytes in the absence of alcohol consumption.Modern trends towards excessive calorie intake and sedentary life styles have increased the prevalence of NAFLD accompanied by obesity and type 2 diabetes.However,the molecular mechanisms underlying the initiation and progression of NAFLD are not clear.Zinc finger proteins(ZFPs)are a superfamily of metalloproteins that contain zinc finger motifs.ZFPs play diverse physiological roles in tissue homeostasis and also contribute to many pathological conditions,including metabolic,cardiovascular,and neurodegenerative diseases and various types of cancer.In this review,we highlight our current knowledge of several ZFPs that play critical roles in the progression of NAFLD,describe their mechanistic functional networks,and discuss the potential for ZFPs as therapeutic targets for NAFLD.