Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing...Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing the batteries to exhibit high charging and discharging overpotentials.Recently,we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode.The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases.Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode(Li-FeZnNC).The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC(without Zn modification)and Li-symmetric cells.The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h.Full batteries with a Li-FeZnNC composite anode,garnet-type SSE,and LiFePO4 cathode show low charging and discharging overpotentials,a capacity of 152 mAh g^(−1),and high stability for 200 cycles.展开更多
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
A Zn Cl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer(FT-IR), therm...A Zn Cl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer(FT-IR), thermo gravimetric analyzer(TGA) and pyridine adsorbed IR were employed to characterize the catalyst. As a result, the modified catalyst showed high acidity and good thermal stability. Zn2+coordinated with a sulfonic acid group to form a stable active site, which effectively decreased the deactivation caused by the degradation of sulfonic acid. Thus the prepared catalyst exhibited excellent catalytic activity, selectivity and stability compared to the unmodified counterpart.展开更多
基金supported by the Australian Research Council Discovery Projects(grant nos.DP200103315,DP200103332,DP220103669,and DP230100685)Linkage Projects(grant no.LP220200920).
文摘Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing the batteries to exhibit high charging and discharging overpotentials.Recently,we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode.The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases.Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode(Li-FeZnNC).The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC(without Zn modification)and Li-symmetric cells.The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h.Full batteries with a Li-FeZnNC composite anode,garnet-type SSE,and LiFePO4 cathode show low charging and discharging overpotentials,a capacity of 152 mAh g^(−1),and high stability for 200 cycles.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
文摘A Zn Cl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer(FT-IR), thermo gravimetric analyzer(TGA) and pyridine adsorbed IR were employed to characterize the catalyst. As a result, the modified catalyst showed high acidity and good thermal stability. Zn2+coordinated with a sulfonic acid group to form a stable active site, which effectively decreased the deactivation caused by the degradation of sulfonic acid. Thus the prepared catalyst exhibited excellent catalytic activity, selectivity and stability compared to the unmodified counterpart.