期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reduction process and zinc removal from composite briquettes composed of dust and sludge from a steel enterprise 被引量:14
1
作者 Lei-ge Xia Rui Mao +3 位作者 Jian-liang Zhang Xiang-nan Xu Meng-fang Wei Fei-hua Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期122-131,共10页
In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitroge... In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitrogen atmosphere. The effects of reaction temperature, reaction time, and carbon content on the metallization and dezincification ratios of the composite briquettes were studied. The reduced com- posite briquettes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The results show that the gravity dust and converter sludge are combined into the composite briquettes and a reasonable combination not only improves the performance of the composite briquettes, but also leads to the reduction with no or little reductant and flux. As the re- action temperature is increased and the reaction time is extended, the metallization and dezincification ratios of the composite briquettes in- crease gradually. When the composite briquettes are roasted at 1300℃ for 30 rain, the metallization ratio and dezineification ratio reaches 91.35% and 99.25%, respectively, indicating that most of the iron oxide is reduced and the zinc is almost completely removed. The carbon content is observed to exert a lesser effect on the reduction process; as the C/O molar ratio increases, the metallization and dezincification ra- tios first increase and then decrease. 展开更多
关键词 solid waste recycling DUST SLUDGE composite briquettes REDUCTION removal of zinc
下载PDF
Thermodynamic and experimental study of high-temperature roasting of blast furnace gas ash for recovery of metallic zinc and iron
2
作者 Zi-han Wang Jing Guo +1 位作者 Han-jie Guo Bin Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第1期108-120,共13页
A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in deta... A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in detail by using ther-modynamic equilibrium calculation and the principle of minimum free energy.The results showed that the main reaction in the system is the reduction of ZnFe_(2)_(4)and iron oxides.Over the full temperature range,iron oxides were more easily reduced than zinc oxides.Regardless of the amount of CO contained in the system,the reduction of ZnO to Zn was difficult to proceed below the boiling point(906℃)of Zn.When the reduction temperature is below 906℃,the reduction process of zinc ferrate was ZnFe_(2)_(4)→ZnO;when the reduction temperature is above 906℃,its reduction process becomed ZnFe_(2)_(4)→ZnO→Zn(g).The metallization and dezincification rates of the BFA gradually increased with increasing reaction temperature.As the C/O ratio increased,the metallization and dezincification rates first increased and then decreased.The effect of reduction time on BFA reduction was similar to that of reaction temperature. 展开更多
关键词 Blast furnace gas ash THERMODYNAMICS zinc removal Iron reduction High-temperature reduction roasting Integrated utilization
原文传递
Treatment of Acid Mine Drainage Using Constructed Wetland in Tropical Environment: A Tanzania Case Report 被引量:1
3
作者 Jamidu Hizzam Yahaya Katima Leonard Gastory Lugali Karoli Nicholas Njau 《Journal of Agricultural Science and Technology(B)》 2013年第6期439-446,共8页
The suitability of constructed wetland (CW) in were developed. The first experiment focused on zinc and treating acid mine drainage (AMD) was investigated. Two experiments nutrients removals. Four units of horizon... The suitability of constructed wetland (CW) in were developed. The first experiment focused on zinc and treating acid mine drainage (AMD) was investigated. Two experiments nutrients removals. Four units of horizontal subsurface flow CWs were used, two cells planted with Phragmites mauritianus, one cell with Typha domingensis and one cell unplanted (control cell). Artificial high concentrated AMD was used. It was mixed with domestic wastewater from the anaerobic waste stabilization pond (WSP) to ensure nutrient supply to the plants in the CW cells. The second experiment tested the tolerance of locally available macrophytes to the harsh acidic environment, while providing required condition for treatment of AMD. To accomplish this, another set of four CW cells planted with different types of macrophytes, namely Typha domingensis, Phragmites mauritianus, Vetiver grass and Papyrus, were used thereby subjecting them to varying acid concentration ofpH of 3.5, 3.0, 2.9 and 2.7. The study demonstrated adequate zinc removal from AMD which is related to sulphide precipitation. A CW cell planted with Typha domingensis showed higher zinc removal (80%-84%) compared to other cells. Different macrophytes showed different nutrient removal efficiency, but overall, for the type of wetland plants studied, phosphorous removal increased with decreasing pH while nitrogen removal behaved quite opposite. On the other hand, Typha domingensis, Phragmites mauritianus and Papyrus were observed to tolerate high acidity as low pH as 2.7 and therefore are suitable macrophytes for AMD treatment with CW. 展开更多
关键词 Constructed wetland acid mine drainage passive system zinc removal suitable macrophytes
下载PDF
Removal Mechanism of Zn,Pb and Alkalis from Metallurgical Dusts in Direct Reduction Process 被引量:15
4
作者 Xue-feng SHE Jing-song WANG +2 位作者 Guang WANG Qing-guo XUE Xin-xin ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第5期488-495,共8页
The high-temperature tube furnace was applied to simulate the rotary hearth furnace (RHF) for the direct reduction of zinc-bearing dusts from steel plants. The removal mechanism of Zn, Pb and alkalis from cold bonde... The high-temperature tube furnace was applied to simulate the rotary hearth furnace (RHF) for the direct reduction of zinc-bearing dusts from steel plants. The removal mechanism of Zn, Pb and alkalis from cold bonded briquettes made by mixing metallurgical wastes, such as dust from bag house filter, OG sludge, fine converter ash and dust from the third electric field precipitator of the sinter strand, in various proportions was investigated. More than 70% of metallization rate, more than 95% of zinc removal rate, 80% of lead removal, as well as more than 80M of K and Na removal rates were achieved for the briquettes kept at 1473-1603 K for 15 min during the direct reduction process respectively. The soot generated in the direct reduction process was studied by chromatography, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results suggested that the main phases of the soot were ZnO, KC1, NaC1 and 4ZnO · ZnC12 · 5H20. Furthermore, the content of Zn reached 64.2 %, which could be used as secondary resources for zinc making. It was concluded that KC1 and NaC1 in secondary dust resulted from the volatilization from the briquettes, whilst ZnO and PbO were produced by the oxidation of Zn or lead vapour from briquettes by direct reduction. 展开更多
关键词 rotary hearth furnace zinc-bearing dust direct reduction zinc removal
原文传递
Coprecipitation mechanisms of Zn by birnessite formation and its mineralogy under neutral pH conditions
5
作者 Shota Tajima Shigeshi Fuchida Chiharu Tokoro 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第11期136-147,共12页
Birnessite(δ-Mn(IV)O_(2))is a great manganese(Mn)adsorbent for dissolved divalent metals.In this study,we investigated the coprecipitation mechanism of δ-MnO_(2) in the presence of Zn(II)and an oxidizing agent(sodiu... Birnessite(δ-Mn(IV)O_(2))is a great manganese(Mn)adsorbent for dissolved divalent metals.In this study,we investigated the coprecipitation mechanism of δ-MnO_(2) in the presence of Zn(II)and an oxidizing agent(sodium hypochlorite)under two neutral pH values(6.0 and 7.5).Themineralogical characteristics and Zn–Mn mixed products were compared with simple surface complexation by adsorption modeling and structural analysis.Batch coprecipitation experiments at different Zn/Mn molar ratios showed a Langmuir-type isotherm at pH 6.0,which was similar to the result of adsorption experiments at pH 6.0 and 7.5.X-ray diffraction and X-ray absorption fine structure analysis revealed triple-corner-sharing innersphere complexation on the vacant sites was the dominant Zn sorption mechanism on δ-MnO_(2) under these experimental conditions.A coprecipitation experiment at pH 6.0 produced some hetaerolite(ZnMn(Ⅲ)_(2)O_(4))and manganite(γ-Mn(Ⅲ)OOH),but only at low Zn/Mn molar ratios(<1).These secondary precipitates disappeared because of crystal dissolution at higher Zn/Mn molar ratios because they were thermodynamically unstable.Woodruffite(ZnMn(IV)_(3)O_(7)•2H_(2)O)was produced in the coprecipitation experiment at pH 7.5 with a high Zn/Mn molar ratio of 5.This resulted in a Brunauer–Emmett–Teller(BET)-type sorption isotherm,in which formation was explained by transformation of the crystalline structure ofδ-MnO_(2) to a tunnel structure.Our experiments demonstrate that abiotic coprecipitation reactions can induce Zn–Mn compound formation on theδ-MnO_(2) surface,and that the pH is an important controlling factor for the crystalline structures and thermodynamic stabilities. 展开更多
关键词 Δ-MNO2 zinc removal Surface complexation X-ray absorption fine structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部