期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Flexible Zinc-Manganese Dioxide Alkaline Batteries Based on Kelp Electrolytes 被引量:2
1
作者 Shuyang Wang Xiayue Fan 《Journal of Materials Science and Chemical Engineering》 2019年第12期19-28,共10页
Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their s... Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA&#183;h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices. 展开更多
关键词 zinc-manganese Dioxide BATTERY FLEXIBLE BATTERY Kelp-Based ELECTROLYTE
下载PDF
ZnO Additive Boosts Charging Speed and Cycling Stability of Electrolytic Zn–Mn Batteries 被引量:1
2
作者 Jin Wu Yang Tang +6 位作者 Haohang Xu Guandie Ma Jinhong Jiang Changpeng Xian Maowen Xu Shu‑Juan Bao Hao Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期293-304,共12页
Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish... Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability. 展开更多
关键词 Electrolytic aqueous zinc-manganese batteries Electrolyte pH value ZnO electrolyte additive Fast constant-voltage charging ability
下载PDF
ZnMn_(3)O_(7):A New Layered Cathode Material for Fast-Charging Zinc-Ion Batteries
3
作者 Ruitao Sun Qin Liu Wenzhuo Deng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第5期85-92,共8页
Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate ... Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate capability.Herein,we report a new layered manganese-based cathode material,ZnMn_(3)O_(7)(ZMO),which possesses a large interlayer spacing of 4.8Åand allows the intercalation of~1.23 Zn-ions per formula unit(corresponding to a capacity of~170 mAh/g).Importantly,ZMO exhibits good cycling stability(72.9%capacity retention over 400 cycles),ultrafast-charging capability(73%state of charge in 1.5 min),and an ultrahigh power density(3510 W/kg at 88 Wh/kg).Through kinetic characterization,the favorable diffusion of ions and the dominant capacitor contribution are found to be conducive to the achievement of superior fast charging capability.Furthermore,the charge storage mechanism is revealed by ex-situ XRD and ex-situ XPS.This work may shed light on the design of high-performance electrode materials for AZIBs. 展开更多
关键词 layered structure zinc-manganese oxide CATHODE zinc-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部