期刊文献+
共找到957篇文章
< 1 2 48 >
每页显示 20 50 100
Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications
1
作者 Weikang Hu Jiaqi Xu +3 位作者 Nanjie Chen Zongcai Deng Yuekun Lai Dongyang Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期899-908,共10页
The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution gr... The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries. 展开更多
关键词 Non-aqueous redox flow batteries Tetrathiofulvarene Redox potential SOLUBILITY Substituent effect
下载PDF
Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery
2
作者 Yingqiao Jiang Yinhui Wang +7 位作者 Gang Cheng Yuehua Li Lei Dai Jing Zhu Wei Meng Jingyu Xi Ling Wang Zhangxing He 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期143-153,共11页
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim... The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB. 展开更多
关键词 graphite felt molten salt N O co-doping ultra-homogeneous etching vanadium redox flow battery
下载PDF
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
3
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron X-ray imaging Tomography Hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
Organized macro-scale membrane size reduction in vanadium redox flow batteries:Part 1.General concept 被引量:1
4
作者 Abdulmonem Fetyan Bronston P.Benetho Musbaudeen O.Bamgbopa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期64-70,I0003,共8页
The high costs of the currently used membranes in vanadium redox flow batteries(VRFBs)contribute to the price of the vanadium redox flow battery systems and therefore limit the market share of the VRFBs.Here we report... The high costs of the currently used membranes in vanadium redox flow batteries(VRFBs)contribute to the price of the vanadium redox flow battery systems and therefore limit the market share of the VRFBs.Here we report a detailed simulation and experimental studies on the effect of membrane reduction of single-cell VRFB.Different simulated designs demonstrate that a proposed centred and double-strip membrane coverage showed a promising performance.Experimental charge-discharge profile of different membrane size reduction,which showed good agreement with simulated data,suggests that the membrane size can comfortably be reduced by up to 20%without severe efficiency or discharge capacity loss.Long-term cycling of 80%centred membrane coverage showed improved capacity retention during the latter cycles with almost 1%difference in capacity and only 2%in energy efficiency when compared to the fully covered-membrane cell.The results hold great promise for the development of cheap RFB stacks and facilitate the way to develop new cell designs with non-overlapping electrodes geometry.Therefore,giving more flexibility to improve the overall performance of the system. 展开更多
关键词 Membrane reduction Electrodes overlapping Cell-Architecture Multiphysics simulation Redox flow Batteries
下载PDF
A Hydrogen Iron Flow Battery with High Current Density and Long Cyclability Enabled Through Circular Water Management
5
作者 Litao Yan Yuyan Shao Wei Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期173-178,共6页
The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power... The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power)and over continuous cycling testing has yet to be demonstrated.In this article,we discuss our design and demonstration of a water-management strategy that supports high current and long-cycling performance of a HyFe flow cell.Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm^(-2)during the charge process.At higher charge current density,more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes.Our water-management approach is based on water vapor feeding in the hydrogen electrode and water evaporation in the iron electrode,thus enabling high current density operation of 300 mA cm^(-2). 展开更多
关键词 acid concentration gradient energy storage flow battery HYDROGEN longcycling performance water management
下载PDF
Soft Template-Induced Porous Polyvinylidene Fluoride Membrane for Vanadium Flow Batteries
6
作者 Dingqin Shi Chunyang Li +1 位作者 Zhizhang Yuan Guojun Li 《Transactions of Tianjin University》 EI CAS 2023年第4期284-292,共9页
Vanadium flow batteries(VFBs)are considered ideal for grid-sc ale,long-duration energy storage applications owing to their decoupled output power and storage capacity,high safety,efficiency,and long cycle life.However... Vanadium flow batteries(VFBs)are considered ideal for grid-sc ale,long-duration energy storage applications owing to their decoupled output power and storage capacity,high safety,efficiency,and long cycle life.However,the widespread adoption of VFB s is hindered by the use of expensive Nafion membranes.Herein,we report a soft template-induced method to develop a porous polyvinylidene fluoride(PVDF)membrane for VFB applications.By incorporating water-soluble and flexible polyethylene glycol(PEG 400)as a soft template,we induced the aggregation of hydrophilic sulfonated poly(ether ether ketone),resulting in phase separation from the hydrophobic PVDF polymer during membrane formation.This process led to the creation of a porous PVDF membrane with controllable morphologies determined by the polyethylene glycol content in the cast solution.The optimized porous PVDF membrane enabled a stable VFB performance for 200 cycles at a current density of 80 mA/cm^(2),and the VFB exhibited a Coulombic efficiency of 95.2%and a voltage efficiency of 87.8%.These findings provide valuable insights for the development of highly stable membranes for VFB applications. 展开更多
关键词 Energy storage Vanadium flow battery Porous polyvinylidene fluoride membrane Soft template-induced phase separation
下载PDF
Enlarging Zn deposition space via regulating Sn-induced effective interface for high areal capacity zinc-based flow battery
7
作者 Yuning Sun Siyu Zhang +5 位作者 Qiming Zhang Lantong Cui Pengfei Wang Yanbin Yin Qian Wang Qinzhi Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期579-586,I0012,共9页
Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the furt... Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the further development.Herein,a novel carbon felt-Sn-carbon felt sandwich host(CSCH)is designed and constructed.Benefiting from the strong chemical absorption and the dehydration effect on Zn(H_(2)O)_(6)^(2+),the Sn activation layer in the CSCH demonstrates the lowest comprehensive resistance for Zn deposition.Thus,Zn is induced to nucleate preferentially on the Sn activation layer,and grows towards the membrane,regulating the spatial distribution of Zn electrochemical deposits,which remarkably improves the areal capacity and cyclic stability of Zn anode.Consequently,the zinc-bromine flow batteries equipped with CSCH electrodes can achieve the ultra-high areal capacity of 120 mA h cm^(-2)at 80 mA cm^(-2),and run stably for 140 h with average energy efficiency of 80.3%in the extreme condition(80 mA cm^(-2),80 mA h cm^(-2)).This innovative work will inspire future advanced designs for high areal capacity electrodes in ZFBs. 展开更多
关键词 Zinc-based flow batteries High areal capacity Sn-induced deposition Zn deposition depth
下载PDF
Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries 被引量:12
8
作者 Ao Xu Wei Shyy Tianshou Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期555-574,共20页
Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electro... Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined. 展开更多
关键词 Lattice Boltzmann method Transport phenomena Multiphase flow Fuel cells flow batteries
下载PDF
KHCO_3 activated carbon microsphere as excellent electrocatalyst for VO^(2+)/VO_2^+ redox couple for vanadium redox flow battery 被引量:5
9
作者 Chen Zhao Yuehua Li +8 位作者 Zhangxing He Yingqiao Jiang Lu Li Fengyun Jiang Huizhu Zhou Jing Zhu Wei Meng Ling Wang Lei Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期103-110,共8页
In this paper,carbon microsphere prepared by hydrothermal treatment was activated by KHCO_3 at high temperature,and employed as the catalyst for VO^(2+)/VO_2^+redox reaction for vanadium redox flow battery(VRFB).Carbo... In this paper,carbon microsphere prepared by hydrothermal treatment was activated by KHCO_3 at high temperature,and employed as the catalyst for VO^(2+)/VO_2^+redox reaction for vanadium redox flow battery(VRFB).Carbon microsphere can be etched by KHCO_3 due to the reaction between the pyrolysis products of KHCO_3 and carbon atoms.Moreover,KHCO_3 activation can bring many oxygen functional groups on carbon microsphere,further improving the wettability of catalyst and increasing the active sites.The electrocatalytic properties of carbon microsphere from hydrothermal treatment are improved by high temperature carbonization,and can further be enhanced by KHCO_3 activation.Among carbon microsphere samples,the VO^(2+)/VO_2^+redox reaction exhibits the highest electrochemical kinetics on KHCO_3 activated sample.The cell using KHCO_3 activated carbon microsphere as the positive catalyst demonstrates higher energy efficiency and larger discharge capacity,especially at high current density.The results reveal that KHCO_3 activated carbon microsphere is an efficient,low-cost carbon-based catalyst for VO^(2+)/VO_2^+redox reaction for VRFB system. 展开更多
关键词 Energy storage VANADIUM redox flow battery Carbon MICROSPHERE KHCO3 ETCHING
下载PDF
A review of electrolyte additives and impurities in vanadium redox flow batteries 被引量:7
10
作者 Liuyue Cao Maria Skyllas-Kazacos +1 位作者 Chris Menictas Jens Noack 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1269-1291,共23页
As one of the most important components of the vanadium redox flow battery (VRFB), the electrolyte can impose a significant impact on cell properties, performance and capital cost. In particular, the electrolyte com... As one of the most important components of the vanadium redox flow battery (VRFB), the electrolyte can impose a significant impact on cell properties, performance and capital cost. In particular, the electrolyte composition will influence energy density, operating temperature range and the practical applications of the VRFB. Various approaches to increase the energy density and operating temperature range have been proposed. The presence of electrolyte impurities, or the addition of a small amount of other chemical species into the vanadium solution can alter the stability of the electrolyte and influence cell perfor- mance, operating temperature range, energy density, electrochemical kinetics and cost effectiveness. This review provides a detailed overview of research on electrolyte additives including stabilizing agents, im- mobilizing agents, kinetic enhancers, as well as electrolyte impurities and chemical reductants that can be used for different purposes in the VRFBs. 展开更多
关键词 Vanadium redox flow battery Electrolyte additive Precipitation inhibitor Stabilizing agent Kinetic enhancer IMPURITY Immobilizing agents Reducing agent
下载PDF
From aqueous Zn-ion battery to Zn-MnO_(2) flow battery:A brief story 被引量:9
11
作者 Tong Xue Hong Jin Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期194-201,共8页
Aqueous Zn-ion battery(AZIB)has become an attractive technology because of its unique features of low cost,high safety and the eco-friendliness.MnO_(2) is the model cathode material for AZIB since the first report on ... Aqueous Zn-ion battery(AZIB)has become an attractive technology because of its unique features of low cost,high safety and the eco-friendliness.MnO_(2) is the model cathode material for AZIB since the first report on reversible Zn-MnO_(2) battery,but recent studies have unveiled different charge storage mechanisms.Due to revamping of the electrochemistry and redesigning of the electrolyte and interface,there is tremendous performance enhancement in AZIB.This mini Review will first give a brief introduction of ZIB,including fundamentals of materials and components,and the progress in recent years.Then,a general classification of working mechanisms related to MnO_(2) in neutral and mildly acidic electrolyte is elaborated.Our focus is put on the recent blossoming Zn-MnO_(2) electrolytic mechanism,which has given birth to the Zn-MnO_(2) redox flow batteries that are highly promising for large-scale static energy storage. 展开更多
关键词 Aqueous zinc-ion battery Deposition/dissolution Electrolytic battery Zn-MnO2 flow battery
下载PDF
Modified carbon cloth as positive electrode with high electrochemical performance for vanadium redox flow batteries 被引量:4
12
作者 Zhangxing He Zhongsheng Chen +4 位作者 Wei Meng Yingqiao Jiang Gang Cheng Lei Dai Ling Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期720-725,共6页
Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no ... Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Vanadium redox flow batteries Carbon cloth ELECTRODE KINETICS Electrochemical performance
下载PDF
Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density 被引量:2
13
作者 Tao Liu Xianfeng Li +1 位作者 Huamin Zhang Jizhong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1292-1303,共12页
The vanadium flow battery (VFB) has been considered as one of the most promising large-scale energy storage technologies in terms of its design flexibility, long cycle life, high efficiency and high safety. How- eve... The vanadium flow battery (VFB) has been considered as one of the most promising large-scale energy storage technologies in terms of its design flexibility, long cycle life, high efficiency and high safety. How- ever, the high cost prevents the VFB technology from broader market penetration. Improving the power density of the VFB is an effective solution to reduce its cost due to the reduced material consumption and stack size. Electrode, as one of the main components in the VFB, providing the reactions sites for redox couples, has an important effect on the voltage loss of the VFB associated with electrochemical polariza- tion, ohmic polarization and concentration polarization. Extensive research has been carried out on the electrode modification to reduce polarizations and hence improve the power density of the VFB. In this review, state-of-the-art of various modification methods on the VFB electrode materials is overviewed and summarized, and the future research directions helpful to reduce polarization loss are presented. 展开更多
关键词 Vanadium flow batteries POLARIZATION ELECTRODE Carbon ELECTROCATALYST
下载PDF
Towards an all-vanadium redox flow battery with higher theoretical volumetric capacities by utilizing the VO^2+/V^3+ couple 被引量:2
14
作者 Wentao Duan Bin Li +8 位作者 Dongping Lu Xiaoliang Wei Zimin Nie Vijayakumar Murugesan James P. Kizewski Aaron Hollas David Reed Vincent Sprenkle Wei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1381-1385,共5页
An all-vanadium redox flow battery with V(IV) as the sole parent active species is developed by accessing the VO2+/V3+ redox couple. These batteries, referred to as V4RBs, possess a higher theoretical volumetric c... An all-vanadium redox flow battery with V(IV) as the sole parent active species is developed by accessing the VO2+/V3+ redox couple. These batteries, referred to as V4RBs, possess a higher theoretical volumetric capacity than traditional VRBs. Copper ions were identified as an effective additive to boost the battery performance. 展开更多
关键词 VANADIUM Redoxreactions Redox flow battery Energy density Cu
下载PDF
Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications 被引量:2
15
作者 Ruijun Gan Yanjiao Ma +2 位作者 Shanshan Li Fengxiang Zhang Gaohong He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1189-1197,共9页
For improvement of vanadium redox flow battery (VRB) performance, novel amphoteric semi- interpenetrating membranes (ASIPN) were prepared using poly(ether ether ketone) (PEEK) and polysul- fone (PSf), the fo... For improvement of vanadium redox flow battery (VRB) performance, novel amphoteric semi- interpenetrating membranes (ASIPN) were prepared using poly(ether ether ketone) (PEEK) and polysul- fone (PSf), the former bearing sulfonic groups and the latter imidazolium. These two groups form ionic crosslinks between PEEK and PSf; meanwhile, covalent cross links were built between PSf chains with ad- dition of N-(3-aminopropyl)-imidazole. The amphoteric nature of the membrane allows facile proton and anion transport; the IPN structure and the presence of imidazolium cation effectively suppress vanadium ion crossover through the membrane. Therefore, the ASIPN based VRBs show higher Coulombic efficiency and energy efficiency than that assembled with pristine SPEEK and Nation 212 membranes. Our work demonstrates that the ASIPN membranes are promising for VRB applications. 展开更多
关键词 Vanadium redox flow battery ASIPN Cross-linking Amphoteric membrane
下载PDF
A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery 被引量:5
16
作者 Georgios Nikiforidis Amal Belhcen Mérièm Anouti 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期238-246,I0007,共10页
A protic ionic liquid is designed and implemented for the first time as a solvent for a high energy density vanadium redox flow battery.Despite being less conductive than standa rd aqueous electrolytes,it is thermally... A protic ionic liquid is designed and implemented for the first time as a solvent for a high energy density vanadium redox flow battery.Despite being less conductive than standa rd aqueous electrolytes,it is thermally stable on a 100 ℃ temperature window,chemically stable for at least 60 days,equally viscous and dense with typical aqueous solvents and most importantly able to solubilize to 6 mol L^(-1) vanadium sulfate,thus increasing the VRFB energy density by a factor of 2.5.Electrochemical measurements revealed quasi-reversible redox transitions for both catholyte and anolyte at 25 ℃ while a proof-of-concept redox flow cell with the proposed electrolyte was tested for a total of 150 cycles at 25 ℃,showing an open circuit potential of 1.39 V and energy and coulombic efficiencies of 65% and 93%,respectively.What’s more,the battery can be equally cycled at 45℃ showing good thermal stability.This study underlines a new route to improve the energy-to-volume ratio of energy storage system. 展开更多
关键词 Protic ionic liquids Redox flow battery ELECTROLYTE High energy density
下载PDF
Broad temperature adaptability of vanadium redox flow battery-part4:Unraveling wide temperature promotion mechanism of bismuth for V^(2+)/V^(3+) couple 被引量:2
17
作者 Yuchen Liu Feng Liang +3 位作者 Yang Zhao Lihong Yu Le Liu Jingyu Xi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1333-1340,共8页
Vanadium flow battery (VFB) is a fast going and promising system for large-scale stationary energy stor- age. However, drawbacks such as low power density and narrow temperature window caused by poor catalytic activ... Vanadium flow battery (VFB) is a fast going and promising system for large-scale stationary energy stor- age. However, drawbacks such as low power density and narrow temperature window caused by poor catalytic activity of graphite felt (GF) electrodes limit its worldwide application. In this paper, bismuth, as a low-cost, no-toxic and high-activity electrocatalyst, is used to modify the thermal activated GF (TGF) via a facile hydrothermal method. Bismuth can effectively inhibit the side reaction of hydrogen evolution in wide temperature range, while promoting the V2+/V3+ redox reaction. As a result, the VFB assembled with Bi/TGF as negative electrode demonstrates outstanding rate performance under the current density up to 400 mAcm-2, as well as a long-term stability over 600 charging/discharging cycles at a high cur- rent density of 150mA cm-2. Moreover, it also shows excellent temperature adaptability from -10 ℃ to 50 ℃ and high durability for life test at the temperature of 50 ℃. 展开更多
关键词 Vanadium flow battery Graphite felt electrode BISMUTH Hydrogen evolution reaction Wide temperature
下载PDF
Sucrose pyrolysis assembling carbon nanotubes on graphite felt using for vanadium redox flow battery positive electrode 被引量:2
18
作者 Haitao Yang Chuanlin Fan Qingshan Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期451-454,共4页
In the present paper, multi-walled carbon nanotubes(MWCNTs) are successfully assembled on graphite felt(GF) using sucrose pyrolysis method for the first time. The in situ formed pyrolytic carbon is chosen as the b... In the present paper, multi-walled carbon nanotubes(MWCNTs) are successfully assembled on graphite felt(GF) using sucrose pyrolysis method for the first time. The in situ formed pyrolytic carbon is chosen as the binder because it is essentially carbon materials as well as CNTs and GF which has a natural tendency to achieve high bonding strength and low contact resistance. The MWCNTs/GF electrode is demonstrated to increase surface area, reduce polarization, lower charge transfer resistance and improve energy conversion efficiency comparing with GF. This excellent electrochemical performance is mainly ascribed to the high electro-catalytic activity of MWCNTs and increasing surface area. 展开更多
关键词 Vanadium redox flow batteries Multi-walled carbon nanotubes Sucrose pyrolysis Positive electrode materials REVERSIBILITY
下载PDF
Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery 被引量:4
19
作者 Waldemir M.Carvalho Jr Laurent Cassayre +4 位作者 Delphine Quaranta Fabien Chauvet Ranine El-Hage Theodore Tzedakis Béatrice Biscans 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期436-445,I0012,共11页
The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium spec... The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations. 展开更多
关键词 Vanadium Redox flow Batteries Supersaturated electrolyte PRECIPITATION Vanadium sulfate Vanadium hydrates
下载PDF
The effect of phosphate additive on the positive electrolyte stability of vanadium redox flow battery 被引量:2
20
作者 Fengyu Tian Lei Wang Chang-Sheng Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1376-1380,共5页
The electrolyte is one of the most important components of vanadium redox flow battery (VRFB). and its stability and solubility determines the energy density of a VRFB. The performance of current positive elec- trol... The electrolyte is one of the most important components of vanadium redox flow battery (VRFB). and its stability and solubility determines the energy density of a VRFB. The performance of current positive elec- trolyte is limited by the low stability of VO2+ at a higher temperature. Phosphate is proved to be a very effective additive to improve the stability of VO2+. Even though, the stabilizing mechanism is still not clear, which hinders the further development of VRFBs. In this paper, to clarify the effect of phosphate additive on the positive electrolyte stability, the hydration structures of VO2+ cations and the reaction mechanisms of precipitation with or without phosphate in the supporting electrolyte of H_2SO_4 solutions were investigated in detail based on calculations of electronic structure. The stable configurations of com- plexes were optimized at the B3LYP/6-311 + G(d,p) level of theory. The zero-point energies and Gibbs free energies for these complexes were further evaluated at the B3LYP/aug-cc-pVTZ level of theory. It shows that a structure of [VO_2(H_2O)_2]+ surrounded by water molecules in H2S04 solution can be formed at the room temperature. With the temperature rises, [VO_2(H_2O)_2]+ will lose a proton and form the interme- diate of VO(OH)_3, and the further dehydration among VO(OH)_3 molecules will create the precipitate of V_2O_5. When H_3PO_4 was added into electrolytes, the V-O-P bond-containing neutral compound could be formed through interaction between VO(OH)_3 and H_3PO_4, and the activation energy of forming the V-O-P bond-containing neutral compound is about 7 kcal tool-1 lower than that of the VO(OH)_3 dehydration, which could avoid the precipitation of V_2O_5 and improve the electrolyte stability. 展开更多
关键词 All vanadium redox flow battery Phosphate additive Density functional theory Transition state Reaction mechanism
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部