Aqueous Zn-ion energy storage systems,which are expected to be integrated into intelligent electronics as a secure power supply,suffer poor reversibility of Zn anodes,predominantly associated with dendritic growth and...Aqueous Zn-ion energy storage systems,which are expected to be integrated into intelligent electronics as a secure power supply,suffer poor reversibility of Zn anodes,predominantly associated with dendritic growth and side reactions.This study introduces a polyanionic strategy to address these formidable issues by developing a hydrogel electrolyte(PACXHE)with carboxyl groups.Notably,the carboxyl groups within the hydrogel structure establish favorable channels to promote the transport of Zn^(2+)ions.They also expedite the desolvation of hydrated Zn^(2+)ions,leading to enhanced deposition kinetics.Additionally,these functional groups confine interfacial planar diffusion and promote preferential deposition along the(002)plane of Zn,enabling a smooth surface texture of the Zn anode.This multifaceted regulation successfully achieves the suppression of Zn dendrites and side reactions,thereby enhancing the electrochemical reversibility and service life during plating/stripping cycles.Therefore,such an electrolyte demonstrates a high average Coulombic efficiency of 97.7%for 500 cycles in the Zn‖Cu cell and exceptional cyclability with a duration of 480 h at 1 mA cm^(-2)/1 mA h cm^(-2)in the Zn‖Zn cell.Beyond that,the Zn-ion hybrid micro-capacitor employing PACXHE exhibits satisfactory cycling stability,energy density,and practicality for energy storage in flexible,intelligent electronics.The present polyanionic-based hydrogel strategy and the development of PACXHE represent significant advancements in the design of hydrogel electrolytes,paving the way for a more sustainable and efficient future in the energy storage field.展开更多
基金funded by the National Natural Science Foundation of China(U2003216)the National Key Research and Development Program of China(2022YFB4101600)+1 种基金the Shanghai Cooperation Organisation Project(2022E01020)the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2022P004)。
文摘Aqueous Zn-ion energy storage systems,which are expected to be integrated into intelligent electronics as a secure power supply,suffer poor reversibility of Zn anodes,predominantly associated with dendritic growth and side reactions.This study introduces a polyanionic strategy to address these formidable issues by developing a hydrogel electrolyte(PACXHE)with carboxyl groups.Notably,the carboxyl groups within the hydrogel structure establish favorable channels to promote the transport of Zn^(2+)ions.They also expedite the desolvation of hydrated Zn^(2+)ions,leading to enhanced deposition kinetics.Additionally,these functional groups confine interfacial planar diffusion and promote preferential deposition along the(002)plane of Zn,enabling a smooth surface texture of the Zn anode.This multifaceted regulation successfully achieves the suppression of Zn dendrites and side reactions,thereby enhancing the electrochemical reversibility and service life during plating/stripping cycles.Therefore,such an electrolyte demonstrates a high average Coulombic efficiency of 97.7%for 500 cycles in the Zn‖Cu cell and exceptional cyclability with a duration of 480 h at 1 mA cm^(-2)/1 mA h cm^(-2)in the Zn‖Zn cell.Beyond that,the Zn-ion hybrid micro-capacitor employing PACXHE exhibits satisfactory cycling stability,energy density,and practicality for energy storage in flexible,intelligent electronics.The present polyanionic-based hydrogel strategy and the development of PACXHE represent significant advancements in the design of hydrogel electrolytes,paving the way for a more sustainable and efficient future in the energy storage field.