From a basic probabilistic argumentation, the Zipfian distribution and Benford’s law are derived. It is argued that Zipf’s law fits to calculate the rank probabilities of identical indistinguishable objects and that...From a basic probabilistic argumentation, the Zipfian distribution and Benford’s law are derived. It is argued that Zipf’s law fits to calculate the rank probabilities of identical indistinguishable objects and that Benford’s distribution fits to calculate the rank probabilities of distinguishable objects. i.e. in the distribution of words in long texts all the words in a given rank are identical, therefore, the rank distribution is Zipfian. In logarithmic tables, the objects with identical 1st digits are distinguishable as there are many different digits in the 2nd, 3rd… places, etc., and therefore the distribution is according to Benford’s law. Pareto 20 - 80 rule is shown to be an outcome of Benford’s distribution as when the number of ranks is about 10 the probability of 20% of the high probability ranks is equal to the probability of the rest of 80% low probability ranks. It is argued that all these distributions, including the central limit theorem, are outcomes of Planck’s law and are the result of the quantization of energy. This argumentation may be considered a physical origin of probability.展开更多
The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is ob...The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is observed in several relaxation experiments on various dielectrics studies since late 19th Century. This relaxation law is also regarded as “universal-law” for dielectric relaxations;and is also termed as power law. This empirical Curie-von Schewidler relaxation law is then used to derive fractional differential equations describing constituent expression for capacitor. In this paper, we give simple mathematical treatment to derive the distribution of relaxation rates of this Curie-von Schweidler law, and show that the relaxation rate follows Zipf’s power law distribution. We also show the method developed here give Zipfian power law distribution for relaxing time constants. Then we will show however mathematically correct this may be, but physical interpretation from the obtained time constants distribution are contradictory to the Zipfian rate relaxation distribution. In this paper, we develop possible explanation that as to why Zipfian distribution of relaxation rates appears for Curie-von Schweidler Law, and relate this law to time variant rate of relaxation. In this paper, we derive appearance of fractional derivative while using Zipfian power law distribution that gives notion of scale dependent relaxation rate function for Curie-von Schweidler relaxation phenomena. This paper gives analytical approach to get insight of a non-Debye relaxation and gives a new treatment to especially much used empirical Curie-von Schweidler (universal) relaxation law.展开更多
Introduction: The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages. A mathematical diagnosis of fetal cardiac dynamics has been developed with this law. Objective: To develop a metho...Introduction: The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages. A mathematical diagnosis of fetal cardiac dynamics has been developed with this law. Objective: To develop a methodology for diagnostic aid to assess the degree of complexity of adult cardiac dynamics by Zipf-Mandelbrot law. Methodology: A mathematical induction was done for this;two groups of Holter recordings were selected: 11 with normal diagnosis and 11 with acute disease of each group, one Holter of each group was chosen for the induction, the law of Zipf-Mandelbrot was applied to evaluate the degree of complexity of each Holter, searching similarities or differences between the dynamics. A blind study was done with 20 Holters calculating sensitivity, specificity and the coefficient kappa. Results: The complexity grade of a normal cardiac dynamics varied between 0.9483 and 0.7046, and for an acute dynamic between 0.6707 and 0.4228. Conclusions: A new physical mathematical methodology for diagnostic aid was developed;it showed that the degree of complexity of normal cardiac dynamics was higher than those with acute disease, showing quantitatively how cardiac dynamics can evolve to acute state.展开更多
文摘From a basic probabilistic argumentation, the Zipfian distribution and Benford’s law are derived. It is argued that Zipf’s law fits to calculate the rank probabilities of identical indistinguishable objects and that Benford’s distribution fits to calculate the rank probabilities of distinguishable objects. i.e. in the distribution of words in long texts all the words in a given rank are identical, therefore, the rank distribution is Zipfian. In logarithmic tables, the objects with identical 1st digits are distinguishable as there are many different digits in the 2nd, 3rd… places, etc., and therefore the distribution is according to Benford’s law. Pareto 20 - 80 rule is shown to be an outcome of Benford’s distribution as when the number of ranks is about 10 the probability of 20% of the high probability ranks is equal to the probability of the rest of 80% low probability ranks. It is argued that all these distributions, including the central limit theorem, are outcomes of Planck’s law and are the result of the quantization of energy. This argumentation may be considered a physical origin of probability.
文摘The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is observed in several relaxation experiments on various dielectrics studies since late 19th Century. This relaxation law is also regarded as “universal-law” for dielectric relaxations;and is also termed as power law. This empirical Curie-von Schewidler relaxation law is then used to derive fractional differential equations describing constituent expression for capacitor. In this paper, we give simple mathematical treatment to derive the distribution of relaxation rates of this Curie-von Schweidler law, and show that the relaxation rate follows Zipf’s power law distribution. We also show the method developed here give Zipfian power law distribution for relaxing time constants. Then we will show however mathematically correct this may be, but physical interpretation from the obtained time constants distribution are contradictory to the Zipfian rate relaxation distribution. In this paper, we develop possible explanation that as to why Zipfian distribution of relaxation rates appears for Curie-von Schweidler Law, and relate this law to time variant rate of relaxation. In this paper, we derive appearance of fractional derivative while using Zipfian power law distribution that gives notion of scale dependent relaxation rate function for Curie-von Schweidler relaxation phenomena. This paper gives analytical approach to get insight of a non-Debye relaxation and gives a new treatment to especially much used empirical Curie-von Schweidler (universal) relaxation law.
文摘Introduction: The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages. A mathematical diagnosis of fetal cardiac dynamics has been developed with this law. Objective: To develop a methodology for diagnostic aid to assess the degree of complexity of adult cardiac dynamics by Zipf-Mandelbrot law. Methodology: A mathematical induction was done for this;two groups of Holter recordings were selected: 11 with normal diagnosis and 11 with acute disease of each group, one Holter of each group was chosen for the induction, the law of Zipf-Mandelbrot was applied to evaluate the degree of complexity of each Holter, searching similarities or differences between the dynamics. A blind study was done with 20 Holters calculating sensitivity, specificity and the coefficient kappa. Results: The complexity grade of a normal cardiac dynamics varied between 0.9483 and 0.7046, and for an acute dynamic between 0.6707 and 0.4228. Conclusions: A new physical mathematical methodology for diagnostic aid was developed;it showed that the degree of complexity of normal cardiac dynamics was higher than those with acute disease, showing quantitatively how cardiac dynamics can evolve to acute state.