Gas atomized 4J36 alloy powder was milled for 72 h then mixed with ZrW2O8 powder and sintered at 600℃ for 4 h under argon atmosphere. 4J36/ZrW2O8 composites containing 10 vol.%, 20 vol.%, 30 vol.%, and 40 vol.% ZrW2O...Gas atomized 4J36 alloy powder was milled for 72 h then mixed with ZrW2O8 powder and sintered at 600℃ for 4 h under argon atmosphere. 4J36/ZrW2O8 composites containing 10 vol.%, 20 vol.%, 30 vol.%, and 40 vol.% ZrW2Os were fabricated, the relative density of which ranged from 70% to 80%. Thermal expansion coefficients of the composites decreased as the amount of ZrW2O8 increased, in agreement with the rule of the mixture. The coefficient of thermal expansion of the 4J36/40 vol.%ZrW2O8 composite in 25-100℃ is 0.55 × 10^+6/℃.展开更多
基金supported by the Research Academies and Institutes Funds of the Ministry of Science and Technology of China (Ke-05021050)
文摘Gas atomized 4J36 alloy powder was milled for 72 h then mixed with ZrW2O8 powder and sintered at 600℃ for 4 h under argon atmosphere. 4J36/ZrW2O8 composites containing 10 vol.%, 20 vol.%, 30 vol.%, and 40 vol.% ZrW2Os were fabricated, the relative density of which ranged from 70% to 80%. Thermal expansion coefficients of the composites decreased as the amount of ZrW2O8 increased, in agreement with the rule of the mixture. The coefficient of thermal expansion of the 4J36/40 vol.%ZrW2O8 composite in 25-100℃ is 0.55 × 10^+6/℃.