The magnetic properties of spinel ferrites Cu_(1-x)Zn_xFe_2O_4 are studied using high-temperature series expansions combined with the Padé approximates. The exchange interactions, inter and intra-sublattices J_...The magnetic properties of spinel ferrites Cu_(1-x)Zn_xFe_2O_4 are studied using high-temperature series expansions combined with the Padé approximates. The exchange interactions, inter and intra-sublattices J_(AA), J_(BB) and J_(AB) are obtained using a probability distribution law. The critical exponent associated with the magnetic susceptibility is obtained.展开更多
Formic acid is considered one of the most economically viable products for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).However,developing highly active and selective electrocatalysts for effective CO_(2)conver...Formic acid is considered one of the most economically viable products for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).However,developing highly active and selective electrocatalysts for effective CO_(2)conversion remains a grand challenge.Herein,we report that structural modulation of the bismuth oxide nanosheet via Zn^(2+)cooperation has a profound positive effect on exposure of the active plane,thereby contributing to high electrocatalytic CO_(2)RR performance.The obtained Zn-Bi_(2)O_(3)catalyst demonstrates superior selectivity towards formate generation in a wide potential range;a high Faradaic efficiency of 95%and a desirable partial current density of around 20 mA·cm^(-2)are obtained at−0.9 V(vs.reversible hydrogen electrode(RHE)).As proposed by density functional theory calculations,Zn substitution is the most energetically feasible for forming and stabilizing the key OCHO*intermediate among the used metal ions.Moreover,the more negative adsorption energy of OCHO*and the relatively low energy barrier for the desorption of HCOOH*are responsible for the enhanced activity and selectivity.展开更多
Conductivity s and thermal conductivity k are directly related to carrier concentration while Seebeck coefficient S is inversely proportional to carrier concentration.Therefore,improving thermoelectric(TE)performance ...Conductivity s and thermal conductivity k are directly related to carrier concentration while Seebeck coefficient S is inversely proportional to carrier concentration.Therefore,improving thermoelectric(TE)performance is challenging.Here,the first-time analysis of secondary phase-controlled TE performance in terms of density-of-state effective mass m*d,weighted mobility mw and quality factor B is discussed in ZnO system.The results show that the secondary spinel phase Ga2O_(3)(ZnO)9 not only impacts on k but also on s and S at high temperature,while the effect of carrier concentration seem to be dominant at low temperature.For the high-spinel-segregation sample,a compensation of dopant atoms from the spinel to substitutional sites in the ZnO matrix at high temperature leads to a low decreased rate of temperaturedependent m*d.The compensation process also induces a band sharpening,a small mw reduction,and a large B enhancement.As a result,In and Ga co-doped ZnO bulk with the highest spinel segregation achieves the greatest PF improvement by 112.8%,owing to enhanced Seebeck coefficient by 110%as compared to the good Zn-substitution sample.展开更多
Zn2+ ions doped quasi-one-dimensional spin-chain materials LiCul-xZnxVO4(x=0, 0.1, 0.2) were prepared by solid-state reaction and the effect of nonmagnetic Zn2+ ions on the crystal structure, valence state and mag...Zn2+ ions doped quasi-one-dimensional spin-chain materials LiCul-xZnxVO4(x=0, 0.1, 0.2) were prepared by solid-state reaction and the effect of nonmagnetic Zn2+ ions on the crystal structure, valence state and magnetic proper- ties of them were studied by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and dc magnetization. The elongation of a and b axes and the shrinkage of c axis indicate a reduced effect of the Jahn-Teller distortion after Zn2+ ions doping, while the valence state of transition metal ions in LiCu1- xZnrVO4 remains unchanged since the equi- valence doping of Zn2+ ions on the Cu2+ sites. The corrected Bonner-Fisher equation fitting to the susceptibility indicates that isolated dimers and spins are created along with the departure from infinite spin chains to finite ones.展开更多
文摘The magnetic properties of spinel ferrites Cu_(1-x)Zn_xFe_2O_4 are studied using high-temperature series expansions combined with the Padé approximates. The exchange interactions, inter and intra-sublattices J_(AA), J_(BB) and J_(AB) are obtained using a probability distribution law. The critical exponent associated with the magnetic susceptibility is obtained.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 1(Nos.RG 85/20 and 125/21)the National Natural Science Foundation of China(No.U20A200201)+1 种基金China Postdoctoral Science Fund,No.3 Special Funding(Pre-Station)(No.2021TQ007)natural science program on basic research project of Shaanxi province(No.2023-JC-QN-0155).
文摘Formic acid is considered one of the most economically viable products for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).However,developing highly active and selective electrocatalysts for effective CO_(2)conversion remains a grand challenge.Herein,we report that structural modulation of the bismuth oxide nanosheet via Zn^(2+)cooperation has a profound positive effect on exposure of the active plane,thereby contributing to high electrocatalytic CO_(2)RR performance.The obtained Zn-Bi_(2)O_(3)catalyst demonstrates superior selectivity towards formate generation in a wide potential range;a high Faradaic efficiency of 95%and a desirable partial current density of around 20 mA·cm^(-2)are obtained at−0.9 V(vs.reversible hydrogen electrode(RHE)).As proposed by density functional theory calculations,Zn substitution is the most energetically feasible for forming and stabilizing the key OCHO*intermediate among the used metal ions.Moreover,the more negative adsorption energy of OCHO*and the relatively low energy barrier for the desorption of HCOOH*are responsible for the enhanced activity and selectivity.
基金supported by the Vietnam Ministry of Science and Technology under grant numberÐTÐL.CN-23/18.
文摘Conductivity s and thermal conductivity k are directly related to carrier concentration while Seebeck coefficient S is inversely proportional to carrier concentration.Therefore,improving thermoelectric(TE)performance is challenging.Here,the first-time analysis of secondary phase-controlled TE performance in terms of density-of-state effective mass m*d,weighted mobility mw and quality factor B is discussed in ZnO system.The results show that the secondary spinel phase Ga2O_(3)(ZnO)9 not only impacts on k but also on s and S at high temperature,while the effect of carrier concentration seem to be dominant at low temperature.For the high-spinel-segregation sample,a compensation of dopant atoms from the spinel to substitutional sites in the ZnO matrix at high temperature leads to a low decreased rate of temperaturedependent m*d.The compensation process also induces a band sharpening,a small mw reduction,and a large B enhancement.As a result,In and Ga co-doped ZnO bulk with the highest spinel segregation achieves the greatest PF improvement by 112.8%,owing to enhanced Seebeck coefficient by 110%as compared to the good Zn-substitution sample.
文摘Zn2+ ions doped quasi-one-dimensional spin-chain materials LiCul-xZnxVO4(x=0, 0.1, 0.2) were prepared by solid-state reaction and the effect of nonmagnetic Zn2+ ions on the crystal structure, valence state and magnetic proper- ties of them were studied by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and dc magnetization. The elongation of a and b axes and the shrinkage of c axis indicate a reduced effect of the Jahn-Teller distortion after Zn2+ ions doping, while the valence state of transition metal ions in LiCu1- xZnrVO4 remains unchanged since the equi- valence doping of Zn2+ ions on the Cu2+ sites. The corrected Bonner-Fisher equation fitting to the susceptibility indicates that isolated dimers and spins are created along with the departure from infinite spin chains to finite ones.