期刊文献+
共找到790篇文章
< 1 2 40 >
每页显示 20 50 100
Recent Advances in Aqueous Zn||MnO_(2)Batteries 被引量:1
1
作者 Chuan Li Rong Zhang +3 位作者 Huilin Cui Yanbo Wang Guojin Liang Chunyi Zhi 《Transactions of Tianjin University》 EI CAS 2024年第1期27-39,共13页
Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,a... Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries. 展开更多
关键词 Aqueous zn||MnO_(2)batteries Zinc-ion batteries Zinc batteries MnO_(2)
下载PDF
Plasma-assisted aerogel interface engineering enables uniform Zn^(2+)flux and fast desolvation kinetics toward zinc metal batteries 被引量:1
2
作者 Zijian Xu Zhenhai Shi +7 位作者 Zhan Chang Fan Feng Zhuanyi Liu Dongkun Chu Jianguo Ren Zi-Feng Ma Suli Chen Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期29-38,I0002,共11页
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)... The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries. 展开更多
关键词 zn metal batteries Aerogel interface Plasma zn^(2+)migration kinetics Dendrite growth
下载PDF
Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries
3
作者 Qiang Ma Aoen Ma +6 位作者 Shanguang Lv Bowen Qin Yali Xu Xianxiang Zeng Wei Ling Yuan Liu Xiongwei Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期609-626,I0015,共19页
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th... Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given. 展开更多
关键词 aqueous zn metal batteries zn metal anode Transport behavior Solvated structure Dendrite-free
下载PDF
Long cycle-life aqueous Zn battery enabled by facile carbon nanotube coating on Cu current collector
4
作者 Beom-Keun Cho Sung-Ho Huh +4 位作者 So Hee Kim Seungho Yu Jong-Seong Bae Jung-Keun Yoo Seung-Ho Yu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期151-164,共14页
As an alternative to Li-ion batteries,aqueous Zn batteries have gained attention due to the abundance of Zn metal,low reduction potential(-0.76 V vs.standard hydrogen electrode),and high theoretical capacity(820 mAh g... As an alternative to Li-ion batteries,aqueous Zn batteries have gained attention due to the abundance of Zn metal,low reduction potential(-0.76 V vs.standard hydrogen electrode),and high theoretical capacity(820 mAh g^(-1))of multivalent Zn2+ion.However,the growth of Zn dendrites and the formation of irreversible surface reaction byproducts pose challenges for ensuring a long battery lifespan and commercialization.Herein,the Cu foil coated with a single-walled carbon nanotube(SWCNT)layer using a facile doctor blade casting method is utilized.The SWCNT-coated Cu foil demonstrates a significantly longer battery lifespan compared to the bare Cu in the half-cell tests.Through operando optical microscopy imaging,we are able to provide intuitive evidence that Zn deposition occurs between the carbon nanotube(CNT)coating and Cu substrate,in agreement with the computational results.Also,with various imaging techniques,the flat morphology and homogeneous distribution of Zn beneath the SWCNT layer are demonstrated.In addition,the full-cell using CNT-coated Cu exhibits a long cycle life compared to the control group,thereby demonstrating improved electrochemical performance with limited Zn for the cycling process. 展开更多
关键词 aqueous zn battery carbon nanotube operando imaging surface coating
下载PDF
Hybrid battery integrated by Zn-air and Zn-Co3O4 batteries at cell level 被引量:2
5
作者 Ning Liu Honglu Hu +1 位作者 Xinxin Xu Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期375-383,共9页
The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power sup... The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power supply equipment.For Zn based hybrid battery,an efficient cathode material with high specific capacitance and excellent ORR,OER activities is a vital component,which determines its performance in great extent.In this work,with Co based coordination polymer as precursor,oxygen vacancy-rich Co3 O4 based cathode material is synthesized.In this material Co3O4 particles with the size about 20 to 35 nm reside evenly in mesoporous carbon matrix doped by nitrogen atoms.In OER,the overpotential of this cathode material is merely 330 m V.Its ORR proceeds with a typical four electron process with half wave achieving 0.76 V.If charge/discharge at 1 A·g^-1,specific capacitance of this cathode material is 254.4 mAh·g^-1.As current density increases to 20 A·g^-1,the specific capacitance still arrives at 122.5 mAh·g^-1 with nearly 50%retained.Based on attractive performance of this cathode material,Zn based hybrid battery is assembled.When discharge at 1 m A·cm-2,it presences two voltage platforms at 1.71 and 1.14 V.In this situation,specific capacitance reaches 790 m Ah·g^-1 with energy density 928 Wh·kg^-1.Hybrid battery shows promising stability after 300-cycle continuous test. 展开更多
关键词 zn based battery Hybrid battery Oxygen vacancy ELECTROCATALYSIS CO3O4
下载PDF
Regulating the inner Helmholtz plane structure at the electrolyte-electrode interface for highly reversible aqueous Zn batteries
6
作者 Jianghe Liu Sanlue Hu +6 位作者 Hexin Guo Guobin Zhang Wen Liu Jianwei Zhao Shenhua Song Cuiping Han Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期57-67,I0002,共12页
The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cos... The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cost,non-toxic maltitol as the electrolyte additive.The preferential adsorption behavior of maltitol can expel the water from the inner Helmholtz plane,and thus hinder the immediate contact between Zn metal and H_(2)O.Meanwhile,strong interaction between maltitol and H_(2)O molecules can restrain the activity of H_(2)O.Besides,the"IHP adsorption effect"along with the low LUMO energy level of maltitol-CF_(3)SO_(3)^(-)can promote the in-situ formation of an organic-inorganic complex solid electrolyte interface(SEI)layer.As a result,the hydrogen/oxygen evolution side reaction,corrosion,and dendrites issues are effectively suppressed,thereby leading to highly reversible and dendrite-free Zn plating/stripping.The Zn‖I_(2)battery with hybrid electrolytes also demonstrates high electrochemical performance and ultralong cycling stability,showing a capacity retention of 75%over 20000 charge-discharge cycles at a large current density of 5 A g^(-1).In addition,the capacity of the device has almost no obvious decay over20000 cycles even at-30℃.This work offers a successful electrolyte regulation strategy via the IHP adsorption effect to design electrolytes for high-performance rechargeable Zn-ion batteries. 展开更多
关键词 Inner Helmholtz plane Adsorption effect Dendrite suppression SEI layer zn||I_(2)battery
下载PDF
Zn/AgO贮备电池存储寿命研究 被引量:15
7
作者 孟凡明 李利群 肖定全 《功能材料》 EI CAS CSCD 北大核心 2004年第2期203-205,共3页
 对化学法制备用于Zn/AgO贮备电池的AgO及其表面处理效果进行热力学稳定性研究,计算活化能并推算存储寿命;同时对不同存储期的电池组性能进行研究。结果表明:用硅酸钠或氟橡胶进行表面处理前后,AgO的分解活化能为128~130kJ/mol;聚异...  对化学法制备用于Zn/AgO贮备电池的AgO及其表面处理效果进行热力学稳定性研究,计算活化能并推算存储寿命;同时对不同存储期的电池组性能进行研究。结果表明:用硅酸钠或氟橡胶进行表面处理前后,AgO的分解活化能为128~130kJ/mol;聚异丁烯与AgO在50℃以上发生化学反应,热力学研究方法对其并不适用;存储5~25年的电池组,其电池组的电池放电容量、AgO正极物质利用率以及AgO含量均接近,放电容量保持率达到90%以上,正极物质利用率接近80%,AgO含量在87%以上。 展开更多
关键词 过氧化银 锌/过氧化银 贮备电池 电池存储寿命 热力学
下载PDF
自激活Zn/AgO电池的电极制备与性能 被引量:1
8
作者 陈仕玉 周建银 +1 位作者 冯秀丽 刘效疆 《电池》 CAS CSCD 北大核心 2011年第3期151-153,共3页
采用涂膏-压制法制备了快激活Zn电极、AgO电极,研究了粘结剂对电极电性能的影响。锤击实验、SEM、激活时间与放电性能分析表明:以8%VAE作粘结剂时,制备的Zn电极、AgO电极能承受5.98×104g加速度的冲击。电极空载激活时间均达8.5 ms... 采用涂膏-压制法制备了快激活Zn电极、AgO电极,研究了粘结剂对电极电性能的影响。锤击实验、SEM、激活时间与放电性能分析表明:以8%VAE作粘结剂时,制备的Zn电极、AgO电极能承受5.98×104g加速度的冲击。电极空载激活时间均达8.5 ms,单体电池负载激活时间为76.5 ms,以98.30 mA/cm2的电流密度放电,电压平台大于1.0 V。 展开更多
关键词 zn/ago电池 锤击实验 激活时间 电极制备
下载PDF
CR传输线模型解析AgO-Zn电池阻抗谱 被引量:2
9
作者 孙秋霞 范启恒 骆海平 《广州化工》 CAS 2010年第6期125-127,共3页
电化学阻抗谱(EIS)是研究电池的重要技术之一,但需要合适的解谱方法才能提取有效信息。本文以文献中Ag-Zn电池的阻抗谱拟合数据为例,说明根据普适性CR传输线模型可得到原作者预言存在却无法证实的结果:存在与电池荷电量(SOC)有直线关系... 电化学阻抗谱(EIS)是研究电池的重要技术之一,但需要合适的解谱方法才能提取有效信息。本文以文献中Ag-Zn电池的阻抗谱拟合数据为例,说明根据普适性CR传输线模型可得到原作者预言存在却无法证实的结果:存在与电池荷电量(SOC)有直线关系,并在SOC=0.4发生转折的参数。结果还表明这种参数有多个,分别与Ag正极的半导体特征,以及放电过程中控制步骤的变化有关,充分显示了EIS信息丰富的特点。本方法结果客观、具有可操作性,因而有重要的理论意义和应用价值。 展开更多
关键词 电化学阻抗谱 CR传输线 过程阻力 ago-zn电池
下载PDF
纳米HZSM-5/PAAS/KOH/PVA电解质在Zn/AgO电池中的应用
10
作者 刘贺华 鲁道荣 谢迎春 《电池》 CAS CSCD 北大核心 2012年第6期333-336,共4页
以聚乙烯醇(PVA)为基体,加入增塑剂聚丙烯酸钠(PAAS)、纳米分子筛HZSM-5和KOH,制备具有高导电率的纳米HZSM-5/PAAS/KOH/PVA电解质,并进行了XRD、SEM和电化学性能测试。在室温下,该复合纳米碱性聚合物电解质的电导率可达0.0... 以聚乙烯醇(PVA)为基体,加入增塑剂聚丙烯酸钠(PAAS)、纳米分子筛HZSM-5和KOH,制备具有高导电率的纳米HZSM-5/PAAS/KOH/PVA电解质,并进行了XRD、SEM和电化学性能测试。在室温下,该复合纳米碱性聚合物电解质的电导率可达0.049S/cm,电化学稳定窗口为2.2V。以0.1C在1.0~1.6V充放电,使用该电解质的Zn/AgO电池具有较好的电化学性能,首次放电比容量为286.1mAh/g,第20次循环的容量保持率为76.8%。 展开更多
关键词 zn ago电池 纳米电解质 结构 形貌 电化学性能
下载PDF
Flexible, Porous, and Metal–Heteroatom?Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery 被引量:10
11
作者 Qijian Niu Binling Chen +3 位作者 Junxia Guo Jun Nie Xindong Guo Guiping Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期147-163,共17页
Developing an e cient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparatio... Developing an e cient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers(Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C(Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction(ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential(0.98 V vs. RHE), half-wave potential(0.89 V vs. RHE), and limiting current density(-5.26 mA cm^(-2)). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density(83.5 mW cm^(-2)), a higher specific capacity(640.3 mAh g^(-1)), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO_2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology. 展开更多
关键词 Electrospinning zn/Co-ZIFs Carbon nanofibers FLEXIBLE POROUS structure ORR zn–air battery
下载PDF
In Situ Coupling Strategy for Anchoring Monodisperse Co_9S_8 Nanoparticles on S and N Dual?Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery 被引量:10
12
作者 Qi Shao Jiaqi Liu +4 位作者 Qiong Wu Qiang Li Heng?guo Wang Yanhui Li Qian Duan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期64-77,共14页
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt... An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications. 展开更多
关键词 In situ COUPLING strategy Porphyrin derivate DOPED GRAPHENE Metal sulfide BIFUNCTIONAL ELECTROCATALYST RECHARGEABLE zn–air battery
下载PDF
胺功能化的铜催化剂:氢键介导的电化学CO_(2)还原为C_(2)产物以及优越的可充电Zn-CO_(2)电池性能
13
作者 项东 李坤振 +3 位作者 苗康华 龙冉 熊宇杰 康雄武 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第8期43-46,共4页
有机分子功能化是一种有前景的策略,用于调控电化学CO_(2)还原反应(eCO_(2)RR)的C_(2+)产物选择性和活性。然而,我们对于电化学CO_(2)还原调控机制的分子水平理解仍然不够清晰。在本文中,我们成功制备了铜纳米颗粒,并使用一系列胺类衍生... 有机分子功能化是一种有前景的策略,用于调控电化学CO_(2)还原反应(eCO_(2)RR)的C_(2+)产物选择性和活性。然而,我们对于电化学CO_(2)还原调控机制的分子水平理解仍然不够清晰。在本文中,我们成功制备了铜纳米颗粒,并使用一系列胺类衍生物(如十六胺(HAD)、N-甲基十六胺(N-MHDA)、十六烷基二甲胺(HDDMA)和十六酰胺(PMM))对其进行功能化,以系统地研究胺表面活性剂分子结构对eCO_(2)RR选择性和活性的影响。结果表明,HDA的功能化可以将C_(2)产物和C_(2)H_(4)的法拉第效率(FE)提高至73.5%和46.4%,并且在−0.9 V vs.RHE(可逆氢电极)电位下,C_(2)产物的分电流密度为131.4 mA·cm^(−2)。理论研究发现,HDA通过与CO_(2)和eCO_(2)RR中间体之间的氢键相互作用,富集了^(*)CO_(2)、^(*)CO和其他反应中间体,降低了CO―CHO耦合反应的动力学能垒,从而促进了eCO_(2)RR向C_(2)产物的转化。当胺基的H原子被甲基取代后,氢键相互作用减弱,竞争的析氢反应加剧。PMM通过Cu―O键与Cu表面发生键合,而不是通过Cu―N键,导致Cu-PMM更倾向于产乙醇。原位拉曼光谱显示,在Cu-HDA表面,CO主要吸附在Cu的顶位吸附位点上,与在Cu表面上的桥式吸附不同,这可能是因为前者表面对CO的富集引发了CO的吸附构型变化。HDA功能化还提高了Cu催化剂的表面pH。基于Cu-HDA组装的可充电Zn-CO_(2)电池在放电电流密度为16 mA∙cm^(−2)时,最大功率密度为6.48 mW∙cm^(−2),并具有长达60 h的良好充放电稳定性。本研究的重点在于通过在分子水平上调节Cu基材料的CO_(2)RR活性和选择性,促进CO_(2)-C_(2)的转化,这可能为提高C_(2)产物的产率提供新的见解。 展开更多
关键词 二氧化碳还原 CO―CHO耦合 有机分子功能化 原位拉曼 C_(2)产物 zn-CO_(2)电池
下载PDF
Bimetallic Nickel Cobalt Sulfide as E cient Electrocatalyst for Zn–Air Battery and Water Splitting 被引量:7
14
作者 Jingyan Zhang Xiaowan Bai +5 位作者 Tongtong Wang Wen Xiao Pinxian Xi Jinlan Wang Daqiang Gao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期33-45,共13页
The development of e cient earth-abundant electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions(ORR, OER, and HER) is important for future energy conversion and energy storage devic... The development of e cient earth-abundant electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions(ORR, OER, and HER) is important for future energy conversion and energy storage devices, for which both rechargeable Zn–air batteries and water splitting have raised great expectations. Herein, we report a single-phase bimetallic nickel cobalt sulfide((Ni,Co)S_2) as an e cient electrocatalyst for both OER and ORR. Owing to the synergistic combination of Ni and Co, the(Ni,Co)S_2 exhibits superior electrocatalytic performance for ORR, OER, and HER in an alkaline electrolyte, and the first principle calculation results indicate that the reaction of an adsorbed O atom with a H_2O molecule to form a *OOH is the potential limiting step in the OER. Importantly, it could be utilized as an advanced air electrode material in Zn–air batteries, which shows an enhanced charge–discharge performance(charging voltage of 1.71 V and discharge voltage of 1.26 V at 2 mA cm^(-2)), large specific capacity(842 mAh g_(Zn)^(-1) at 5 mA cm^(-2)), and excellent cycling stability(480 h). Interestingly, the(Ni,Co)S_2-based Zn–air battery can e ciently power an electrochemical water-splitting unit with(Ni,Co)S_2 serving as both the electrodes. This reveals that the prepared(Ni,Co)S_2 has promising applications in future energy conversion and energy storage devices. 展开更多
关键词 (Ni Co)S2 NANOSHEET arrays DFT calculations zn–air batteries Water SPLITTING
下载PDF
Flexible rechargeable Ni//Zn battery based on self-supported NiCo_2O_4 nanosheets with high power density and good cycling stability 被引量:6
15
作者 Haozhe Zhang Xinyue Zhang +5 位作者 Haodong Li Yifeng Zhang Yinxiang Zeng Yexiang Tong Peng Zhang Xihong Lu 《Green Energy & Environment》 SCIE 2018年第1期56-62,共7页
The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery w... The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on selfsupported NiCo_2 O_4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of183.1 mAh g^(-1) and a good cycling performance(82.7% capacity retention after 3500 cycles). More importantly, this battery achieves an admirable power density of 49.0 kW kg^(-1) and energy density of 303.8 Wh kg^(-1), substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application. 展开更多
关键词 Ni//zn battery FLEXIBLE NiCo2O4 RECHARGEABLE Long cycling life
下载PDF
Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage 被引量:6
16
作者 Tingting Gao Guangyuan Yan +8 位作者 Xin Yang Qing Yan Yankuan Tian Jianwei Song Faxue Li Xueli Wang Jianyong Yu Yiju Li Shaojun Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期192-200,I0006,共10页
High-performance flexible one-dimensional(1D)electrochemical energy storage devices are crucial for the applications of wearable electronics.Although much progress on various 1D energy storage devices has been made,ch... High-performance flexible one-dimensional(1D)electrochemical energy storage devices are crucial for the applications of wearable electronics.Although much progress on various 1D energy storage devices has been made,challenges involving fabrication cost,scalability,and efficiency remain.Herein,a highperformance flexible all-fiber zinc-ion battery(ZIB)is fabricated using a low-cost,scalable,and efficient continuous wet-spinning method.Viscous composite inks containing cellulose nanofibers/carbon nanotubes(CNFs/CNTs)binary composite network and either manganese dioxide nanowires(MnO_(2) NWs)or commercial Zn powders are utilized to spinning fiber cathodes and anodes,respectively.MnO_(2) NWs and Zn powders are uniformly dispersed in the interpenetrated CNFs/CNTs fibrous network,leading to homogenous composite inks with an ideal shear-thinning property.The obtained fiber electrodes demonstrate favorable uniformity and flexibility.Benefiting from the well-designed electrodes,the assembled flexible fiber-shaped ZIB delivers a high specific capacity of 281.5 m Ah g^(-1) at 0.25 A g^(-1) and displays excellent cycling stability over 400 cycles.Moreover,the wet-spun fiber-shaped ZIBs achieve ultrahigh gravimetric and volumetric energy densities of 47.3 Wh kg^(-1) and 131.3 m Wh cm^(-3),respectively,based on both cathode and anode and maintain favorable stability even after 4000 bending cycles.This work offers a new concept design of 1D flexible ZIBs that can be potentially incorporated into commercial textiles for wearable and portable electronics. 展开更多
关键词 Manufacturing Wet spinning zn ion battery NANOCELLULOSE FIBER
下载PDF
An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries 被引量:4
17
作者 Yuzhu Chu Lingxiao Ren +2 位作者 Zhenglin Hu Chengde Huang Jiayan Luo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1006-1042,共37页
Combining the unique advantages of aqueous electrolytes and metallic Zn anode, rechargeable aqueous Zn-ion batteries(ZIBs) are of great promise for large-scale energy storage applications due to their inherent high sa... Combining the unique advantages of aqueous electrolytes and metallic Zn anode, rechargeable aqueous Zn-ion batteries(ZIBs) are of great promise for large-scale energy storage applications due to their inherent high safety, low cost, and environmental friendliness. As the essential component of ZIBs, Zn metal anode suffers from severe dendrite formation and inevitable side reactions(e.g. corrosion and hydrogen evolution)in aqueous electrolytes, which leads to low Coulombic efficiency and inferior cycling stability, impeding their large-scale applications. To be compatible with satisfactory aqueous ZIBs, Zn anode has been modified from various perspectives and focus areas. Herein, based on their intrinsic characteristics, we review the related improvement strategies for Zn anode, including interphase, substrate, and bulk design, so as to achieve an in-depth understanding of Zn anode optimization. Furthermore, the timely summary of characterization methods for Zn anodes are also performed for the first time, from both thermodynamic and kinetics perspectives, which is particularly helpful for beginners to understand the complicated characterizations and employ suitable methods. Finally, certain noteworthy points are put forward for subsequent investigation of aqueous ZIBs. It is expected that this review will enlighten researchers to explore more efficient optimization strategies for Zn anode in aqueous electrolytes. 展开更多
关键词 zn anodes Corrosion DENDRITE BATTERIES Electrolyte
下载PDF
Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries 被引量:7
18
作者 Peitao Liu Jiaqi Ran +3 位作者 Baorui Xia Shibo Xi Daqiang Gao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第5期165-176,共12页
One approach to accelerate the stagnant kinetics of both the oxygen reduction and evolution reactions(ORR/OER)is to develop a rationally designed multiphase nanocomposite,where the functions arising from each of the c... One approach to accelerate the stagnant kinetics of both the oxygen reduction and evolution reactions(ORR/OER)is to develop a rationally designed multiphase nanocomposite,where the functions arising from each of the constituent phases,their interfaces,and the overall structure are properly controlled.Herein,we successfully synthesized an oxygen electrocatalyst consisting of Ni nanoparticles purposely interpenetrated into mesoporous NiO nanosheets(porous Ni/NiO).Benefiting from the contributions of the Ni and NiO phases,the well-established pore channels for charge transport at the interface between the phases,and the enhanced conductivity due to oxygen-deficiency at the pore edges,the porous Ni/NiO nanosheets show a potential of 1.49 V(10 mA cm^-2)for the OER and a half-wave potential of 0.76 V for the ORR,outperforming their noble metal counterparts.More significantly,a Zn-air battery employing the porous Ni/NiO nanosheets exhibits an initial charging-discharging voltage gap of 0.83 V(2 mA cm^-2),specific capacity of 853 mAh gZn^-1 at 20 mA cm^-2,and long-time cycling stability(120 h).In addition,the porous Ni/NiO-based solid-like Zn-air battery shows excellent electrochemical performance and flexibility,illustrating its great potential as a next-generation rechargeable power source for flexible electronics. 展开更多
关键词 Porous Ni/NiO OXYGEN reduction REACTION OXYGEN evolution REACTION Electrocatalysis FLEXIBLE zn–air battery
下载PDF
Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries 被引量:2
19
作者 Yixiang Zhang Lequan Wang +5 位作者 Qingyun Li Bo Hu Junming Kang Yuhuan Meng Zedong Zhao Hongbin Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期373-386,共14页
The anode-free design is a promising strategy to increase the energy density of aqueous Zn metal batteries(AZMBs).However,the scarcity of Zn-rich cathodes and the rapid loss of limited Zn greatly hinder their commerci... The anode-free design is a promising strategy to increase the energy density of aqueous Zn metal batteries(AZMBs).However,the scarcity of Zn-rich cathodes and the rapid loss of limited Zn greatly hinder their commercial applications.To address these issues,a novel anode-free Zniodine battery(AFZIB)was designed via a simple,low-cost and scalable approach.Iodine plays bifunctional roles in improving the AFZIB overall performance:enabling high-performance Zn-rich cathode and modulating Zn deposition behavior.On the cathode side,the ZnI_(2) serves as Zn-rich cathode material.The graphene/polyvinyl pyrrolidone heterostructure was employed as an efficient host for ZnI_(2) to enhance electron conductivity and suppress the shuttle effect of iodine species.On the anode side,trace I_(3)^(−) additive in the electrolyte creates surface reconstruction on the commercial Cu foil.The in situ formed zincophilic Cu nanocluster allows ultralow-overpotential and uniform Zn deposition and superior reversibility(average coulombic efficiency>99.91% over 7,000 cycles).Based on such a configuration,AFZIB exhibits significantly increased energy density(162 Wh kg^(−1)) and durable cycle stability(63.8% capacity retention after 200 cycles)under practical application conditions.Considering the low cost and simple preparation methods of the electrode materials,this work paves the way for the practical application of AZMBs. 展开更多
关键词 zn metal battery zn deposition zn-rich cathode Anode-free Energy density
下载PDF
Synthesis of silk-like FeS_2/NiS_2 hybrid nanocrystals with improved reversible oxygen catalytic performance in a Zn-air battery 被引量:4
20
作者 Jing Jin Jie Yin +1 位作者 Hanwen Liu Pinxian Xi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期43-51,共9页
The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal‐air battery devices.Herein,an efficient liquid exfoliation strategy was designed for pro... The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal‐air battery devices.Herein,an efficient liquid exfoliation strategy was designed for producing silk‐like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn‐air batteries.Because of the unique silk‐like morphology and interface nanocrystal structure,they can catalyze the oxygen evolution reaction(OER)efficiently with a low overpotential of 233 mV at j=10 mA cm?2.This is an improvement from the recently reported catalysts in 1.0 M KOH.Meanwhile,the oxygen reduction reaction(ORR)activity of the silk‐like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half‐wave potential of 640 mV.In addition,the reversible oxygen electrode activity of the silk‐like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V,based on the potential of the OER and ORR.Further,the homemade rechargeable Zn‐air batteries using FeS2/NiS2 hybrid nanocrystals as the air‐cathode displayed a high open‐circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h.The solid Zn‐air batteries exhibited an excellent rechargeable performance for 15 h.This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices. 展开更多
关键词 Silk‐like FeS2/NiS2 Interface nanocrystal Reversible oxygen electrocatalyst zn‐air battery
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部