Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
The effects of under-aging treatment on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy produced by squeeze casting were investigated using optical microscopy(OM),X-ray diffractometry(XRD),scanning e...The effects of under-aging treatment on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy produced by squeeze casting were investigated using optical microscopy(OM),X-ray diffractometry(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and hardness and tensile testing.The results showed that most of secondary phases were dissolved intoα(Al)matrix while no significant grain growth happened under the condition of solution treatment at 470°C for 4 h.Due to the strengthening effect of GP zones,for alloys treated by under-aging process,the increase of aging time and aging temperature improved the ultimate tensile strength(UTS)and yield strength(YS),but decreased the elongation(δ)to some extent.By utilizing appropriate aging time and temperature,the best combination of strength and ductility could be obtained to fulfill the design requirements of automobile components.展开更多
The microstructure and mechanical properties at different depths of squeeze-cast,solution-treated and aged Al−5.0Mg−3.0Zn−1.0Cu alloy were investigated.For squeeze-cast alloy,from casting surface to interior,the grain...The microstructure and mechanical properties at different depths of squeeze-cast,solution-treated and aged Al−5.0Mg−3.0Zn−1.0Cu alloy were investigated.For squeeze-cast alloy,from casting surface to interior,the grain size ofα(Al)matrix and width of T-Mg32(AlZnCu)49 phase increase significantly,while the volume fraction of T phase decreases.The related mechanical properties including ultimate tensile strength(UTS)and elongation decrease from 243.7 MPa and 2.3%to 217.9 MPa and 1.4%,respectively.After solution treatment at 470℃ for 36 h,T phase is dissolved into matrix,and the grain size increases so that the UTS and elongation from surface to interior are respectively reduced from 387.8 MPa and 18.6%to 348.9 MPa and 13.9%.After further peak-aging at 120℃ for 24 h,numerous G.P.II zone andη′phase precipitate in matrix.Consequently,UTS values of the surface and interior increase to 449.5 and 421.4 MPa,while elongation values decrease to 12.5%and 8.1%,respectively.展开更多
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project(2017ZX04006001)supported by the National Science and Technology Major Project of China
文摘The effects of under-aging treatment on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy produced by squeeze casting were investigated using optical microscopy(OM),X-ray diffractometry(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and hardness and tensile testing.The results showed that most of secondary phases were dissolved intoα(Al)matrix while no significant grain growth happened under the condition of solution treatment at 470°C for 4 h.Due to the strengthening effect of GP zones,for alloys treated by under-aging process,the increase of aging time and aging temperature improved the ultimate tensile strength(UTS)and yield strength(YS),but decreased the elongation(δ)to some extent.By utilizing appropriate aging time and temperature,the best combination of strength and ductility could be obtained to fulfill the design requirements of automobile components.
基金Projects(51674166,U1902220)supported by the National Natural Science Foundation of China。
文摘The microstructure and mechanical properties at different depths of squeeze-cast,solution-treated and aged Al−5.0Mg−3.0Zn−1.0Cu alloy were investigated.For squeeze-cast alloy,from casting surface to interior,the grain size ofα(Al)matrix and width of T-Mg32(AlZnCu)49 phase increase significantly,while the volume fraction of T phase decreases.The related mechanical properties including ultimate tensile strength(UTS)and elongation decrease from 243.7 MPa and 2.3%to 217.9 MPa and 1.4%,respectively.After solution treatment at 470℃ for 36 h,T phase is dissolved into matrix,and the grain size increases so that the UTS and elongation from surface to interior are respectively reduced from 387.8 MPa and 18.6%to 348.9 MPa and 13.9%.After further peak-aging at 120℃ for 24 h,numerous G.P.II zone andη′phase precipitate in matrix.Consequently,UTS values of the surface and interior increase to 449.5 and 421.4 MPa,while elongation values decrease to 12.5%and 8.1%,respectively.