CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-qualit...CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-quality CuIn(S,Se)2 absorber thin films. In order to figure out the influence of heat treatments on in-depth composition uniformity of CuIn(S,Se)2 thin films, two kinds of reaction temperature profiles were investigated. One process is "one step profile", referring to formation of CuIn(S,Se)2 thin films just at elevated temperature (e.g. 500 ℃). The other is "two step profile", which allows for slow diffusion of S and Se elements into the alloy precursors at a low temperature before the formation and re-crystallization of CuIn(S,Se)2 thin films at higher temperature (e.g. first 250 ℃ then 500 ℃). X-ray diffrac- tion studies reveal that there is a discrepancy in the shape of (112) peak. Samples annealed with "one step profile" have splits on (112) peaks, while samples annealed with "two step profile" have relatively symmetrical (112) peaks. Grazing incident X-ray diffraction and en- ergy dispersive spectrum measurements of samples successively etched in bromine methanol show that CuIn(S,Se)2 thin films have better in-depth composition uniformity after "two step profile" annealing. The reaction mechanism during the two thermal processing was also investigated by X-ray diffraction and Raman spectra.展开更多
The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the...The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the studies the alkali metals were treated as dopants. Several recent studies have showed that the alkali metals may not only act as dopants but also form secondary phases in the absorber layer or on the surfaces of the films. Using the first-principles calculations, we screened out the most probable secondary phases of Na and K in CIGS and CZTSSe, and studied their electronic structures and optical properties. We found that all these alkali chalcogenide compounds have larger band gaps and lower VBM levels than CIGS and CZTSSe, because the existence of strong p-d coupling in CIS and CZTS pushes the valence band maximum (VBM) level up and reduces the band-gaps, while there is no such p-d coupling in these alkali chalcogenides. This band alignment repels the photo-generated holes from the secondary phases and prevents the electron-hole recombination. Moreover, the study on the optical properties of the secondary phases showed that the absorption coefficients of these alkali chalcogenides are much lower than those of CIGS and CZTSSe in the energy range of 0-3.4eV, which means that the alkali chalcogenides may not influence the absorption of solar light. Since the alkali metal dopants can passivate the grain boundaries and increase the hole carrier concentration, and meanwhile their related secondary phases have innocuous effect on the optical absorption and band alignment, we can understand why the alkali metal dopants can improve the CIGS and CZTSSe solar cell performance.展开更多
The structural characteristics and optical and electrical properties of molecular-beam-epitaxy (MBE) grown ZnS0.8Se0.2 thin films on indium-tin-oxide (ITO) glass substrates were investigated in this work. The X-ray di...The structural characteristics and optical and electrical properties of molecular-beam-epitaxy (MBE) grown ZnS0.8Se0.2 thin films on indium-tin-oxide (ITO) glass substrates were investigated in this work. The X-ray diffraction (XRD) results indicated that high quality polycrystalline ZnS0.8Se0.2 thin film grown at the optimized temperature had a preferred orientation along the (111) planes. The transmission electron microscopy (TEM) cross-sectional micrograph of the sample showed a well defined columnar structure with lateral crystal dimension in the order of a few hundred angstroms. Ultraviolet(UV) photoresponsivity as high as 0.01 A/W had been demonstrated and for wavelengths longer than 450 nm, the response was down from the peak response by more than 3 orders of magnitude. The thin ZnS0.8Se0,2 photosensor layer, with a wide energy gap and anisotropic electrical property, makes a transmission UV liquid crystal light valve (LCLV) with high resolution feasible.展开更多
Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films i...Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.展开更多
The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large ...The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology.展开更多
Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still h...Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
文摘CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-quality CuIn(S,Se)2 absorber thin films. In order to figure out the influence of heat treatments on in-depth composition uniformity of CuIn(S,Se)2 thin films, two kinds of reaction temperature profiles were investigated. One process is "one step profile", referring to formation of CuIn(S,Se)2 thin films just at elevated temperature (e.g. 500 ℃). The other is "two step profile", which allows for slow diffusion of S and Se elements into the alloy precursors at a low temperature before the formation and re-crystallization of CuIn(S,Se)2 thin films at higher temperature (e.g. first 250 ℃ then 500 ℃). X-ray diffrac- tion studies reveal that there is a discrepancy in the shape of (112) peak. Samples annealed with "one step profile" have splits on (112) peaks, while samples annealed with "two step profile" have relatively symmetrical (112) peaks. Grazing incident X-ray diffraction and en- ergy dispersive spectrum measurements of samples successively etched in bromine methanol show that CuIn(S,Se)2 thin films have better in-depth composition uniformity after "two step profile" annealing. The reaction mechanism during the two thermal processing was also investigated by X-ray diffraction and Raman spectra.
基金supported by the National Natural Science Foundation of China(NSFC)under grant nos.61574059 and 61722402the National Key Research and Development Program of China(2016YFB0700700)+1 种基金Shu-Guang program(15SG20)CC of ECNU
文摘The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the studies the alkali metals were treated as dopants. Several recent studies have showed that the alkali metals may not only act as dopants but also form secondary phases in the absorber layer or on the surfaces of the films. Using the first-principles calculations, we screened out the most probable secondary phases of Na and K in CIGS and CZTSSe, and studied their electronic structures and optical properties. We found that all these alkali chalcogenide compounds have larger band gaps and lower VBM levels than CIGS and CZTSSe, because the existence of strong p-d coupling in CIS and CZTS pushes the valence band maximum (VBM) level up and reduces the band-gaps, while there is no such p-d coupling in these alkali chalcogenides. This band alignment repels the photo-generated holes from the secondary phases and prevents the electron-hole recombination. Moreover, the study on the optical properties of the secondary phases showed that the absorption coefficients of these alkali chalcogenides are much lower than those of CIGS and CZTSSe in the energy range of 0-3.4eV, which means that the alkali chalcogenides may not influence the absorption of solar light. Since the alkali metal dopants can passivate the grain boundaries and increase the hole carrier concentration, and meanwhile their related secondary phases have innocuous effect on the optical absorption and band alignment, we can understand why the alkali metal dopants can improve the CIGS and CZTSSe solar cell performance.
基金Project supported by the National Natural Science Foundation of China (No. 59910161981) and RGC grant from the Hong Kong Government Grant (No. NSFC/HKUST 35) China
文摘The structural characteristics and optical and electrical properties of molecular-beam-epitaxy (MBE) grown ZnS0.8Se0.2 thin films on indium-tin-oxide (ITO) glass substrates were investigated in this work. The X-ray diffraction (XRD) results indicated that high quality polycrystalline ZnS0.8Se0.2 thin film grown at the optimized temperature had a preferred orientation along the (111) planes. The transmission electron microscopy (TEM) cross-sectional micrograph of the sample showed a well defined columnar structure with lateral crystal dimension in the order of a few hundred angstroms. Ultraviolet(UV) photoresponsivity as high as 0.01 A/W had been demonstrated and for wavelengths longer than 450 nm, the response was down from the peak response by more than 3 orders of magnitude. The thin ZnS0.8Se0,2 photosensor layer, with a wide energy gap and anisotropic electrical property, makes a transmission UV liquid crystal light valve (LCLV) with high resolution feasible.
文摘Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.
基金supported by the National Natural Science Foundation of China(61874159,62074052,61974173,52072327,51702085 and 51802081)the Joint Talent Cultivation Funds of NSFC-HN(U1704151 and U1904192)+1 种基金the Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)the Science and Technology Innovation Talents in Universities of Henan Province(21HASTIT023)。
文摘The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology.
基金the National Natural Science Foundation of China(61874159,61974173,51702085,51802081 and 21603058)the Joint Talent Cultivation Funds of NSFC-HN(U1704151)the Science and Technology Innovation Talents in Universities of Henan Province(18HASTIT016)。
文摘Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.