期刊文献+
共找到132,312篇文章
< 1 2 250 >
每页显示 20 50 100
Color characteristics of Cu-Zn-Al alloys 被引量:5
1
作者 Li, Baomian Zhang, Xiuhua(Shenyang Institute of Gold Technology, Shenyang 110015) 《中国有色金属学会会刊:英文版》 CSCD 1994年第3期89-92,共4页
COLORCHARACTERISTICSOFCu-Zn-AlALLOYS ̄①Li,Baomian;Zhang,Xiuhua(ShenyangInstituteofGoldTechnology,Shenyang1100... COLORCHARACTERISTICSOFCu-Zn-AlALLOYS ̄①Li,Baomian;Zhang,Xiuhua(ShenyangInstituteofGoldTechnology,Shenyang110015)COLORCHARACTER... 展开更多
关键词 CU-zn-al alloys COLOR CHROMATICITY PARAMETERS COLOR DIFFERENCE
下载PDF
DIFFERENTIAL SCANNING CALORIMETRY AND X-RAY DIFFRACTION STUDIES ON AGING BEHAVIOR OF Zn-Al ALLOYS 被引量:2
2
作者 X.L. Xu, Z. W. Yu, S.J. Ji, J.C. Sun and Z.K. Hei (Dalian Maritime University, Dalian 116024, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第2期109-114,共6页
Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities o... Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM. 展开更多
关键词 Aging of materials Aluminum alloys Differential scanning calorimetry X ray diffraction
下载PDF
Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys 被引量:25
3
作者 张静 李忠盛 +1 位作者 GUO Zheng-xiao 潘复生 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期452-458,共7页
The microstructural constituents and the crystallographic morphology of the primary intermetallic phases in permanent-mould-cast Mg-Zn-Al alloys with typical compositions within high zinc castable domain were investig... The microstructural constituents and the crystallographic morphology of the primary intermetallic phases in permanent-mould-cast Mg-Zn-Al alloys with typical compositions within high zinc castable domain were investigated. Three kinds of primary compounds with distinct morphology were identified as Mg32(Al,Zn)49(τ), MgZn(ε), and a ternary icosahedral quasi-crystalline compound (denoted with Q). The constituent is found to change with Zn and Al content and their concentration ratio. Alloys with middle mass ratio of Zn to Al and Al content, consist of α-Mg and τ phase, while alloys with high mass ratio of Zn to Al and low Al are composed of α-Mg, ε and a small amount of τ, those with low ratio of Zn to Al and high Al consist of α-Mg with Q. Solidification characteristics and process were proposed. The solidification ranges and liquidus temperature decrease with increasing Zn and Al content for τ-and Q-type alloys, whereas ε-type alloy shows reverse tendency. The second phase transformation moves to higher temperature range when Al content increases and ratio of Zn to Al decreases. 展开更多
关键词 镁合金 显微结构 结晶形态 Mg-zn-al 铸造
下载PDF
Microstructure of interaction interface between Al-Si,Zn-Al alloys and Al_2O_(3p)/6061Al composite
4
作者 许志武 闫久春 +1 位作者 吕世雄 杨士勤 《中国有色金属学会会刊:英文版》 CSCD 2004年第2期351-355,共5页
Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and ... Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and Zn-Al alloys and an interaction layer forms between the alloy and composite during interaction. Little Al-Si alloys remain on the surface when they fully wet the composite and Si element in Al-Si alloy diffuses into composite entirely and assembles in the composite near the interface of Al-Si alloy/composite to form a Si-rich zone. The microstructure in interaction layer with Si penetration is still dense. Much more residual Zn-Al alloy exists on the surface of composite when it wets the composite, and porosities appear at the interface of Zn-Al alloy/composite. The penetration of elements Zn, Cu of Zn-Al alloy into composite leads to the generation of shrinkage cavities in the interaction layer and makes the microstructure of Al2O)3p)/6061Al composite loose. 展开更多
关键词 AL-SI合金 zn-al合金 Al2O3p/6061Al复合材料 显微结构 湿润性 TLP 压力焊接
下载PDF
KINETICS CHARACTERISTICS OF BAINITE FORMATION IN Cu-Zn-Al ALLOYS
5
作者 Jiang Lixin Lu Wei +1 位作者 Jiang Bohong Xu Zuyao 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1991年第1期57-60,共4页
TTT diagrams and kinetics curves of bainite formation through up quenching from martensitic slate and of dilatometry and cooling from high temperature parent phase in Cu-Zn-Al alloys are established by ments of dilato... TTT diagrams and kinetics curves of bainite formation through up quenching from martensitic slate and of dilatometry and cooling from high temperature parent phase in Cu-Zn-Al alloys are established by ments of dilatometry and metallographic inspection.Experimental results show that the kinetics characteristics of bainite formation obey the Austin-Rickett Equation with n=2.25 for up-quenched specimens and n=1.80 for specimens cooled from high temperature,and the activation energy of bainite formation is about.110 kJ/mol,corresponding to that ofthe diffusion of solute atoms. 展开更多
关键词 Cu-zn-al alloy bainitic transformation KINETICS
下载PDF
Numerical modeling of damping capacity of Zn-Al alloys with fully lamellar microstructures
6
作者 王锦程 张忠明 杨根仓 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第5期1049-1054,共6页
The damping behaviors of Zn-Al alloys with fully lamellar microstructures were simulated with the cell method. The influences of the grain boundary condition, the strain amplitude, the number of the lamellae in the gr... The damping behaviors of Zn-Al alloys with fully lamellar microstructures were simulated with the cell method. The influences of the grain boundary condition, the strain amplitude, the number of the lamellae in the grain (N) and the content ratio of Zn and Al in Zn-Al alloys on the damping capacity were investigated. The results indicate that the grain boundary condition has great influence on the damping capacity of Zn-Al alloys, and also affects the relationship between the damping capacity and the number of lamellae (N). The variation of damping capacity with the strain amplitude is increasing exponentially with the strain amplitude and the damping capacity increases with the increasing of content of Zn. 展开更多
关键词 合金 薄状微观结构 数值模型 阻尼系数 复合材料
下载PDF
电弧喷涂Zn-Al伪合金涂层耐腐蚀性能研究进展
7
作者 张敏 丁玉萍 +1 位作者 王淞 刘施峰 《表面技术》 EI CAS CSCD 北大核心 2024年第10期1-15,共15页
通过在钢基体表面制备涂层可以很好地延长钢铁材料的服役时间,减少因腐蚀造成的重大事故和人员伤亡。相较于传统的纯Zn涂层、纯Al涂层以及Zn-Al合金涂层,Zn-Al伪合金涂层能够为基体材料提供长久有效的腐蚀防护,在钢铁材料的腐蚀防护中... 通过在钢基体表面制备涂层可以很好地延长钢铁材料的服役时间,减少因腐蚀造成的重大事故和人员伤亡。相较于传统的纯Zn涂层、纯Al涂层以及Zn-Al合金涂层,Zn-Al伪合金涂层能够为基体材料提供长久有效的腐蚀防护,在钢铁材料的腐蚀防护中具有巨大的应用潜力。简述了Zn-Al伪合金涂层电弧喷涂制备工艺的特点;介绍了Zn、Al、Zn-Al合金及Zn-Al伪合金涂层在模拟海洋环境下的腐蚀防护原理;在此基础上从组分、喷涂工艺参数(喷涂距离、喷涂电流和喷涂电压)、元素掺杂(Mg、Si及Re)及后处理工艺(封孔、激光重熔)等角度,论述了其对Zn-Al伪合金涂层耐蚀性的影响;讨论了Zn-Al伪合金涂层防腐体系在桥梁、海洋钢结构件、地下运输管道中的应用现状;最后总结了目前研究工作中存在的挑战,提出了电弧喷涂Zn-Al伪合金涂层尚需深入研究的重点问题,为提高钢铁材料使用寿命提供了参考。 展开更多
关键词 zn-al伪合金 电弧喷涂 涂层 耐蚀性
下载PDF
基于冷喷涂工艺的Mg-Zn-Al-Sn-Mn合金防腐Al涂层制备
8
作者 陈良 鲍意浩 +3 位作者 李志刚 钱丽华 赵国群 张存生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第7期2153-2166,共14页
采用冷喷涂技术在Mg-Zn-Al-Sn-Mn合金表面制备Al涂层,以提高其耐腐蚀性能。研究工作气体温度和压力对Al涂层显微组织和腐蚀行为的影响。结果表明,随着气体温度和压力的升高,Al涂层的致密度和厚度均明显增加。高的气体温度能降低颗粒沉... 采用冷喷涂技术在Mg-Zn-Al-Sn-Mn合金表面制备Al涂层,以提高其耐腐蚀性能。研究工作气体温度和压力对Al涂层显微组织和腐蚀行为的影响。结果表明,随着气体温度和压力的升高,Al涂层的致密度和厚度均明显增加。高的气体温度能降低颗粒沉积的临界速度,并提高沉积效率。高的气体压力不仅提升机械结合质量,而且对沉积的涂层具有较强的夯实作用。由于孔隙的减少,Al涂层的耐蚀性随着气体温度和压力的升高而提高。Al(OH)_(3)和Al_(2)O_(3)等腐蚀产物可以堵塞涂层中的孔隙,并作为阻碍腐蚀的物理屏障,从而有效保护Mg合金免受腐蚀。 展开更多
关键词 冷喷涂 镁合金 铝涂层 耐蚀性 显微组织
下载PDF
烧结NdFeB磁体表面Zn-Al/T8超疏水复合涂层的显微组织及耐蚀性
9
作者 张晓虎 罗军明 +4 位作者 徐吉林 陈金 黄俊 马永存 薛名山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第5期1606-1617,共12页
为提升烧结NdFeB磁体的耐蚀性,采用旋涂法和等离子体增强化学气相沉积技术在其表面制备Zn-Al/T8(2-全氟辛基乙基丙烯酸酯)超疏水复合涂层。结果表明,Zn-Al涂层主要由片层状的Zn和Al相组成,厚度大约为28μm。Zn-Al/T8复合涂层的接触角达... 为提升烧结NdFeB磁体的耐蚀性,采用旋涂法和等离子体增强化学气相沉积技术在其表面制备Zn-Al/T8(2-全氟辛基乙基丙烯酸酯)超疏水复合涂层。结果表明,Zn-Al涂层主要由片层状的Zn和Al相组成,厚度大约为28μm。Zn-Al/T8复合涂层的接触角达到151.78°,而滚动角仅为5.13°,说明Zn-Al/T8复合涂层可提供一个超疏水表面。Zn-Al涂层和Zn-Al/T8复合涂层对烧结NdFeB的磁性能均无显著影响。Zn-Al涂层通过牺牲阳极来提高NdFeB磁体的耐蚀性,而Zn-Al/T8复合涂层通过超疏水表面进一步提升耐蚀性。Zn-Al/T8复合涂层较Zn-Al涂层具有更好的耐盐雾性能。Zn-Al/T8超疏水复合涂层是一种非常有前途的烧结NdFeB磁体保护涂层。 展开更多
关键词 显微组织 耐蚀性 烧结NDFEB磁体 zn-al涂层 超疏水表面 旋涂法 等离子体增强化学气相沉积
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:1
10
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
11
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
12
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion 被引量:1
13
作者 Xiaoshuang Li Dmitry Sukhomlinov Zaiqing Que 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期118-128,共11页
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond... Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment. 展开更多
关键词 multi-material additive manufacturing laser-based powder bed fusion thermal diffusivity dissimilar metals copper alloy
下载PDF
New insights on the high-corrosion resistance of UHP Mg-Ge alloys tested in a simulated physiological environment 被引量:1
14
作者 Ting Liu Xingrui Chen +4 位作者 Jeffrey Venezuela Yuan Wang Zhiming Shi Wenyi Chen Matthew Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1026-1044,共19页
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M... UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities. 展开更多
关键词 UHP Mg-Ge alloy Cathodic kinetics suppression Biodegradable metals In vitro corrosion Magnesium corrosion.
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:1
15
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
16
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics ALLOYING
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
17
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization
18
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE Alloy design Machine learning Bayesian optimization
下载PDF
Recent innovations in laser additive manufacturing of titanium alloys
19
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
High-entropy alloys in thermoelectric application:A selective review
20
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部