The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dach...The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks.展开更多
The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly sh...The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly shales and siltstones) of the Jiapila Formation (T 3 j ) and carbonate rocks of the Bolila Formation (T 3 b ) of the Upper Triassic. Five mineralization patterns have been recognized in the deposit, i.e., ①veinlet\|disseminated Cu\|Mo ore in the porphyry; ②skarn\|type Cu ore at the contact zone with carbonates (T 3 b ); ③stratiform\|like oxidized Cu ore between T 3 b carbonate rocks and T 3 j hornstones; ④brecciated Cu ore at the local periphery of porphyry; and ⑤vein Pb\|Zn\|Ag ore in the outer contact zone. They constitute a unique integrated polymetal mineralization series of epigenetic intermediate\|acid magmatic hydrothermal system.Studies have shown that the Yulong deposit was the coupling product of sedimentation, magmatism, and tectonism. The Cu\|bearing sandstones in the Japila Formation have provided partial ore\|bearing materials for the porphyry mineralization during the Himalayan period. The mineralized porphyry mass was passively emplaced and controlled by a nose\|like anticlinal trap opening to the north. The interlayered fractured zone formed during folding between the Jiapila and Bolila Formations acted as favorable host space for stratiform\|like skarn and oxidized ores. A large number of cleavages and fissures developed during folding provided both conduits for the circulation of ore\|forming fluids and host spaces for Pb\|Zn\|Ag ore veins. The veinlet\|disseminated Cu\|Mo ore in the porphyry mass owns the characteristics of typical porphyry copper deposits in the world. The veinlet\|disseminated ore body and the stratiform\|like skarn\|type and/or oxidized ore body, the two main ore bodies in Yulong, are connected with each other and shown as “mushroom\|like" shape, in which the former occurs as “mushroom stem" and the latter as “mushroom cover".展开更多
By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a researc...By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a research into the interrelation between tecto-geochemistry and structural stress field,revealedthe mechanism of metallogenesis by magma and ore-forming fluids driven under dynamic forces,andproposed a tecto-geochemistry model for the formation of the ore deposits,so as to suggest a basis oftheory for the prognoses of location and magnitude of hidden deposits.展开更多
The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesopr...The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KⅠ,KⅡ, and KⅢ, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KⅠ ore block is mainly composed of chalcopyrite, scheelite,pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite,and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma(2σ,MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma(2σ, MSWD = 0.49) for the KⅠ ore block.They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KⅠ ore block contain high abundances of rare earth elements(REE, 42.0–95.7 ppm)and are enriched in light REE compared to heavy REE, with negative Eu anomalies(δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [ ^(87)Sr/ ^(86)Sr = 0.7107–0.7118;ε_(Nd)(t) =-4.1 to-4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets.展开更多
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern par...The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite-sericite-quartz zone and an outer seicite - chlorite - calcite-epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from -1.67 to +0.49‰ with average of -0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66-17.75, 15.50-15.60, and 37.64-38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.展开更多
The NM copper polymetal deposit is located in the middle north part of the Truong Son metallogenic belt in Laos,which is the skarn-typed deposit and located in the contact between Indosinian granite and Lower Carbonif...The NM copper polymetal deposit is located in the middle north part of the Truong Son metallogenic belt in Laos,which is the skarn-typed deposit and located in the contact between Indosinian granite and Lower Carboniferous limestone.All the ore-bodies in NM deposit can be divided into four types according to their occurrences:I copper ore-body as the massive restite developed in inner contact near the granite in north part;Ⅱ-1 zinc-copper ore body and Ⅱ-2 copper-iron ore body developed within contact betwee...展开更多
从 Dajing 存款的 Sn-Cu 矿石身体并且从 Huanggangliang 存款的 Sn 矿石身体在荧石和石英套住的单个液体包括上的 LA-ICP-MS 分析被进行用液体的 Rb/Sr 和 Sn/Cu 比率在 Dajing 存款跟踪 Cu 富有、 Sn 富有的液体的来源和进化。在 theD...从 Dajing 存款的 Sn-Cu 矿石身体并且从 Huanggangliang 存款的 Sn 矿石身体在荧石和石英套住的单个液体包括上的 LA-ICP-MS 分析被进行用液体的 Rb/Sr 和 Sn/Cu 比率在 Dajing 存款跟踪 Cu 富有、 Sn 富有的液体的来源和进化。在 theDajing 的Cu富有的液体扔的结果表演,相对,在 Na 并且可能的富人源于深层的基本岩浆,包含 Cuseveral 到几多于 Sn ,和 Sr 的十时间几到几多于 Rb 的十时间,当时Sn富有的液体,相对,在 K 并且可能的富人源于高级花岗石的岩浆,包含 Sn 几到几多于 Cu ,和 Rb 的十时间几到几多于 Sr 的十时间。这被建议 Sn 富有并且 Cu 富有的液体在阶段被混合对低温度和低咸度中等,在 Dajing 存款的中央部分导致 Cu-Sn 矿石身体的形成。展开更多
基金the State Key BasicResearch Program ofChina(TG1999043203 ,TG1999043201) the Geological Survey Program(K1.4-3-4)under the Ministry of Land and Resources.
文摘The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks.
文摘The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly shales and siltstones) of the Jiapila Formation (T 3 j ) and carbonate rocks of the Bolila Formation (T 3 b ) of the Upper Triassic. Five mineralization patterns have been recognized in the deposit, i.e., ①veinlet\|disseminated Cu\|Mo ore in the porphyry; ②skarn\|type Cu ore at the contact zone with carbonates (T 3 b ); ③stratiform\|like oxidized Cu ore between T 3 b carbonate rocks and T 3 j hornstones; ④brecciated Cu ore at the local periphery of porphyry; and ⑤vein Pb\|Zn\|Ag ore in the outer contact zone. They constitute a unique integrated polymetal mineralization series of epigenetic intermediate\|acid magmatic hydrothermal system.Studies have shown that the Yulong deposit was the coupling product of sedimentation, magmatism, and tectonism. The Cu\|bearing sandstones in the Japila Formation have provided partial ore\|bearing materials for the porphyry mineralization during the Himalayan period. The mineralized porphyry mass was passively emplaced and controlled by a nose\|like anticlinal trap opening to the north. The interlayered fractured zone formed during folding between the Jiapila and Bolila Formations acted as favorable host space for stratiform\|like skarn and oxidized ores. A large number of cleavages and fissures developed during folding provided both conduits for the circulation of ore\|forming fluids and host spaces for Pb\|Zn\|Ag ore veins. The veinlet\|disseminated Cu\|Mo ore in the porphyry mass owns the characteristics of typical porphyry copper deposits in the world. The veinlet\|disseminated ore body and the stratiform\|like skarn\|type and/or oxidized ore body, the two main ore bodies in Yulong, are connected with each other and shown as “mushroom\|like" shape, in which the former occurs as “mushroom stem" and the latter as “mushroom cover".
文摘By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a research into the interrelation between tecto-geochemistry and structural stress field,revealedthe mechanism of metallogenesis by magma and ore-forming fluids driven under dynamic forces,andproposed a tecto-geochemistry model for the formation of the ore deposits,so as to suggest a basis oftheory for the prognoses of location and magnitude of hidden deposits.
基金funded by a "Chinese NSF" Project (41272114) to Xingchun Zhanga "CAS Western Light Talent Culture" Project to Chengbiao Lenga "CAS Hundred Talents" Project to Jianfeng Gao
文摘The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KⅠ,KⅡ, and KⅢ, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KⅠ ore block is mainly composed of chalcopyrite, scheelite,pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite,and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma(2σ,MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma(2σ, MSWD = 0.49) for the KⅠ ore block.They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KⅠ ore block contain high abundances of rare earth elements(REE, 42.0–95.7 ppm)and are enriched in light REE compared to heavy REE, with negative Eu anomalies(δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [ ^(87)Sr/ ^(86)Sr = 0.7107–0.7118;ε_(Nd)(t) =-4.1 to-4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets.
基金financially supported by the National Natural Science Foundation of China (No. 40972065)the Special Project (No. XDA08100500) of the Chinese Academy of Science
文摘The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite-sericite-quartz zone and an outer seicite - chlorite - calcite-epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from -1.67 to +0.49‰ with average of -0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66-17.75, 15.50-15.60, and 37.64-38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.
基金supported by China Postdoctoral Science Foundation,Institute of Geochemistry under Chinese Academy of Sciences and "Research of quick-locating-technical methods for Xaisomboun metallogenic target in Laos"a innovative fund of China non-ferrous Metals Resource Geological Survey
文摘The NM copper polymetal deposit is located in the middle north part of the Truong Son metallogenic belt in Laos,which is the skarn-typed deposit and located in the contact between Indosinian granite and Lower Carboniferous limestone.All the ore-bodies in NM deposit can be divided into four types according to their occurrences:I copper ore-body as the massive restite developed in inner contact near the granite in north part;Ⅱ-1 zinc-copper ore body and Ⅱ-2 copper-iron ore body developed within contact betwee...
基金The LA-ICP-MS analyses were carfled out at the laboratory of Prof.GUnther at Institute of Science and Technology,Switzerland.Dr.Yuan Honglin is thanked for assistance during the analyses.Profs.Ni Pei and Fan Hongrui are thanked for constructive comments.The work was supported by National Natural Science Foundation of China(Grant No.40273021)National 973 Project(Grant No.2001CB409806).
文摘从 Dajing 存款的 Sn-Cu 矿石身体并且从 Huanggangliang 存款的 Sn 矿石身体在荧石和石英套住的单个液体包括上的 LA-ICP-MS 分析被进行用液体的 Rb/Sr 和 Sn/Cu 比率在 Dajing 存款跟踪 Cu 富有、 Sn 富有的液体的来源和进化。在 theDajing 的Cu富有的液体扔的结果表演,相对,在 Na 并且可能的富人源于深层的基本岩浆,包含 Cuseveral 到几多于 Sn ,和 Sr 的十时间几到几多于 Rb 的十时间,当时Sn富有的液体,相对,在 K 并且可能的富人源于高级花岗石的岩浆,包含 Sn 几到几多于 Cu ,和 Rb 的十时间几到几多于 Sr 的十时间。这被建议 Sn 富有并且 Cu 富有的液体在阶段被混合对低温度和低咸度中等,在 Dajing 存款的中央部分导致 Cu-Sn 矿石身体的形成。