The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime...The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.展开更多
Al-5.6Zn-3.0Mg-1.6Cu-1.1Li-0.24Cr alloys and Al-8.0Zn-2.4Mg-2.4Cu-1.1Li-0.18Zr alloys (mass fraction, %) were aged by different processes. The microstructure and mechanical properties were determined by transmission e...Al-5.6Zn-3.0Mg-1.6Cu-1.1Li-0.24Cr alloys and Al-8.0Zn-2.4Mg-2.4Cu-1.1Li-0.18Zr alloys (mass fraction, %) were aged by different processes. The microstructure and mechanical properties were determined by transmission electron microscopy(TEM), tensile test and Vicker's hardness test. The experimental results show that the most signified hardening is obtained by double-ageing or multi-ageing for the Al-Zn-Mg-Cu-Li alloys. The yield strength and the elastic modulus of the Li-containing alloys have relationships with ageing processes. The elastic modulus of Li-containing alloys decreases with the increment of precipitates though it is higher than that of Al-Zn-Mg-Cu alloy.展开更多
Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by a...Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by analyzing the curve of kinetics strength vs the cube of radius. The results show that the coarsening of precipitates conforms to LSW principle. In addition, the characteristic of s^3J(s) vs s curves was analyzed. The results show that the curves for samples aged at 160 ℃ for various durations(24, 48 and 96 h) have negative deviation, which maybe results in the formation of certain new precipitate. In the other aging treatment states, the curves conform to Porod principle which means there is sharp boundary between the precipitates and matrix.展开更多
Although a few high-strength biodegradable Zn alloys with yield strengths(YSs)over 300 MPa in rolled state have been developed,their elongations(ELs)are generally less than 30%.This study developed rolled Zn-2Cu-x Li(...Although a few high-strength biodegradable Zn alloys with yield strengths(YSs)over 300 MPa in rolled state have been developed,their elongations(ELs)are generally less than 30%.This study developed rolled Zn-2Cu-x Li(x=0.2 wt.%,0.5 wt.%,0.8 wt.%)alloys with YSs of 316-335 MPa and ELs of 44%-61%.Three-dimensional atom probe(3DAP)and time of flight secondary ion mass spectrometry(TOF-SIMS)were employed to characterize Li distribution.Three kinds of Zn-Cu-Li ternary phases are identified,which are blockyε′-(Cu_(0.5),Li_(0.5))Zn 4,blockyβ′-(Li_(0.9),Cu_(0.1))Zn 4,and small roundγparticles with high Li content in the annealed state.Other identified phases are Zn,β-LiZn 4,andε-CuZn 4 phases.With the increase of Li content in the alloys,ε′phase with 6.50 at.%Cu transforms intoβ′phase with 2.12 at.%Cu,i.e.,the average level in the alloys.Withinε′phase,there exist nano-scale Li clusters andεphase,resulting inε′/εstructure.Dense Zn laths precipitate fromβ′phase,resulting inβ′/Zn lamellar structure.The lamel-lar structure is the matrix of Zn-2Cu-0.8Li and leads to near-isotropic plasticity.Electrochemistry tests show that degradation rates fall in the range of 153-196μm/year,which decrease with Li content.All the alloys exert positive effects on the growth of MC3T3-E1 cells with 10%extract.This research reveals how microstructure evolves in Zn-2Cu-x Li alloys,which lays the foundation for their future applications.展开更多
Microstructure control always plays a key role in enhancing properties of high-strength Al alloys. Attempts to improve the microstructure of 7000 series alloys by addition of 1.0 wt% Li have been made for a long time,...Microstructure control always plays a key role in enhancing properties of high-strength Al alloys. Attempts to improve the microstructure of 7000 series alloys by addition of 1.0 wt% Li have been made for a long time, but unsystematically. This article compares the microstructural features of 1.0 wt% Li-containing A1-Zn-Mg-Cu alloy with those of Li-free Al-Zn-Mg-Cu alloy by using differential scanning calorimetric (DSC) techniques, Vickers microhardness and transmission electron microscopy (TEM). The results show the dominance of Guinier Preston (GP) zones, η' or η phases in 1.0 wt% Li-containing Al-Zn-Mg-Cu alloy, and confirm the capability of Li to retard the rate of precipitates growth and coarsening.展开更多
目的建立微波消解-电感耦合等离子体质谱(ICP-MS)直接稀释测定脉络宁注射液中25种矿物质元素(Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V、As、Cd和Hg)的方法。方法分别对微波消解条件...目的建立微波消解-电感耦合等离子体质谱(ICP-MS)直接稀释测定脉络宁注射液中25种矿物质元素(Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V、As、Cd和Hg)的方法。方法分别对微波消解条件和测试条件进行考察;样品经微波消解后,采用电感耦合质谱仪测定25种矿物质元素,并对测定方法学进行考察。结果确定最佳消解条件为3步缓慢升温:400 W 80℃升温10 min,保留5 min;600 W 120℃升温10 min,保留5 min;900 W 200℃升温20 min,保留20 min;25种矿物质元素在各自的线性范围内线性关系良好,r≥0.999 6,精密度、稳定性和重复性试验的RSD均符合定量分析要求;加标回收率为94.7%~106.1%,RSD在0.34%~2.79%。脉络宁注射液中检测出Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V,未检出As、Cd和Hg。结论该方法简便、迅速、准确,适用于脉络宁注射液中25种矿物质元素的同时测定。展开更多
基金financially supported by the Natural Science Foundation of Ningbo,China (No.2023J053)。
文摘The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.
基金Project(2001AA332030) supported by the Advanced Materials Committee of China
文摘Al-5.6Zn-3.0Mg-1.6Cu-1.1Li-0.24Cr alloys and Al-8.0Zn-2.4Mg-2.4Cu-1.1Li-0.18Zr alloys (mass fraction, %) were aged by different processes. The microstructure and mechanical properties were determined by transmission electron microscopy(TEM), tensile test and Vicker's hardness test. The experimental results show that the most signified hardening is obtained by double-ageing or multi-ageing for the Al-Zn-Mg-Cu-Li alloys. The yield strength and the elastic modulus of the Li-containing alloys have relationships with ageing processes. The elastic modulus of Li-containing alloys decreases with the increment of precipitates though it is higher than that of Al-Zn-Mg-Cu alloy.
文摘Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by analyzing the curve of kinetics strength vs the cube of radius. The results show that the coarsening of precipitates conforms to LSW principle. In addition, the characteristic of s^3J(s) vs s curves was analyzed. The results show that the curves for samples aged at 160 ℃ for various durations(24, 48 and 96 h) have negative deviation, which maybe results in the formation of certain new precipitate. In the other aging treatment states, the curves conform to Porod principle which means there is sharp boundary between the precipitates and matrix.
基金financially supported by Xiongan New Area Science and Technology Innovation Project(2022XACX0600)the National Natural Science Foundation of China(Nos.52231010,52071028).
文摘Although a few high-strength biodegradable Zn alloys with yield strengths(YSs)over 300 MPa in rolled state have been developed,their elongations(ELs)are generally less than 30%.This study developed rolled Zn-2Cu-x Li(x=0.2 wt.%,0.5 wt.%,0.8 wt.%)alloys with YSs of 316-335 MPa and ELs of 44%-61%.Three-dimensional atom probe(3DAP)and time of flight secondary ion mass spectrometry(TOF-SIMS)were employed to characterize Li distribution.Three kinds of Zn-Cu-Li ternary phases are identified,which are blockyε′-(Cu_(0.5),Li_(0.5))Zn 4,blockyβ′-(Li_(0.9),Cu_(0.1))Zn 4,and small roundγparticles with high Li content in the annealed state.Other identified phases are Zn,β-LiZn 4,andε-CuZn 4 phases.With the increase of Li content in the alloys,ε′phase with 6.50 at.%Cu transforms intoβ′phase with 2.12 at.%Cu,i.e.,the average level in the alloys.Withinε′phase,there exist nano-scale Li clusters andεphase,resulting inε′/εstructure.Dense Zn laths precipitate fromβ′phase,resulting inβ′/Zn lamellar structure.The lamel-lar structure is the matrix of Zn-2Cu-0.8Li and leads to near-isotropic plasticity.Electrochemistry tests show that degradation rates fall in the range of 153-196μm/year,which decrease with Li content.All the alloys exert positive effects on the growth of MC3T3-E1 cells with 10%extract.This research reveals how microstructure evolves in Zn-2Cu-x Li alloys,which lays the foundation for their future applications.
文摘Microstructure control always plays a key role in enhancing properties of high-strength Al alloys. Attempts to improve the microstructure of 7000 series alloys by addition of 1.0 wt% Li have been made for a long time, but unsystematically. This article compares the microstructural features of 1.0 wt% Li-containing A1-Zn-Mg-Cu alloy with those of Li-free Al-Zn-Mg-Cu alloy by using differential scanning calorimetric (DSC) techniques, Vickers microhardness and transmission electron microscopy (TEM). The results show the dominance of Guinier Preston (GP) zones, η' or η phases in 1.0 wt% Li-containing Al-Zn-Mg-Cu alloy, and confirm the capability of Li to retard the rate of precipitates growth and coarsening.
文摘目的建立微波消解-电感耦合等离子体质谱(ICP-MS)直接稀释测定脉络宁注射液中25种矿物质元素(Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V、As、Cd和Hg)的方法。方法分别对微波消解条件和测试条件进行考察;样品经微波消解后,采用电感耦合质谱仪测定25种矿物质元素,并对测定方法学进行考察。结果确定最佳消解条件为3步缓慢升温:400 W 80℃升温10 min,保留5 min;600 W 120℃升温10 min,保留5 min;900 W 200℃升温20 min,保留20 min;25种矿物质元素在各自的线性范围内线性关系良好,r≥0.999 6,精密度、稳定性和重复性试验的RSD均符合定量分析要求;加标回收率为94.7%~106.1%,RSD在0.34%~2.79%。脉络宁注射液中检测出Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V,未检出As、Cd和Hg。结论该方法简便、迅速、准确,适用于脉络宁注射液中25种矿物质元素的同时测定。