This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w...This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.展开更多
Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests a...Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests and transmission electron microscopy (TEM). The results show that the ultimate tensile strength, yield strength and elongation for Alloys A, B and C are 736 MPa, 695.5 MPa and 7%; 711 MPa, 674 MPa and 12.5%; 740.5 MPa, 707.5 MPa and 13%, respectively after solid solution treatment ((450 °C, 2 h)+(470 °C, 1 h)) followed by aging at 120 °C for 12 h. The dominant strengthening phases in Alloy A are GPII zone andη′ phase, the main precipitate in Alloy B isη′ phase, and the main precipitates in Alloy C are GPI zone, GPII zone andη′ phase, which are the reason for better comprehensive properties of Alloy C. The increase of zinc content leads to the improvement of the strength. The increase of copper content improves the elongation but slightly decreases the strength. Large second-phase particles formed by the increase in the manganese content induce a decrease in the elongation of alloys.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scatte...The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively.展开更多
High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat tre...High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat treatment, mechanical properties increase greatly: tensile strength up to 754 MPa, yield strength up to 722 MPa, fracture elongation up to 8%, and elastic modulus up to 72 GPa, respectively. [展开更多
High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques. The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy, transmission electron microscop...High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques. The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Secondary phases in the microstructures of the alloys prepared by spray deposition and conventional cast were examined. The results indicate that under the conventional casting condition, the microstructure of the alloy revealed the presence of coarse Al/Mg(ZnCu)2 eutectic phases, and the spray deposited process causes an obvious modification in size, morphology, and distribution of secondary phases in the microstructure as well as reduction of segregation. The superior microstructure of the spray-deposited Al-Zn-Mg-Cu alloy was attributed to the high cooling rate, and associated with the rapid solidification process.展开更多
Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential s...Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and hardness test. The results show that addition of Ce can remarkably refine the as-cast grains and eutectic microstructure. A transformation from Mg(Zn,Cu,A1)2 phase to A12CuMg phase is observed during homogenization. Furthermore, the Ce addition introduces changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Ce promotes the precipitation of η' phase, but it also partly retards the precipitation of GP zones. The density of precipitates decreases in a certain degree and rod-like η' precipitates increase when Ce content is from 0.2% to 0.4% (mass fraction).展开更多
The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with sc...The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with scanning electron microscopy(SEM)and high-angle angular dark field scanning transmission electron microscopy(HAADF-STEM)microstructural examinations.The results showed that the tensile strength enhancement of high Zn-containing Al-Zn-Mg-Cu alloys was mainly attributed to the high density nano-scale matrix precipitates.The SCC plateau velocity for the alloy with 11.0 wt.%Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.%Zn,which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones.The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features,grain-boundary microchemistry,and electrochemical properties.展开更多
A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al...A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment.展开更多
By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-...By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-aging (120°C/24h + 160°C/8h + 120°C/24h), were characterized. It is found that compared with the Al-Zn-Mg-Cu alloys treated by T76 (120°C/24h + 160°C/8h), the new multi-stage aging treatment can improve the tensile strength, fracture toughness, hardness and conductivity of the alloys at the same time. This is mainly due to the pre-aging, over-aging and re-aging process of super high strength aluminum alloys. Compared with the two-stage over aging process, the formation of multi-stage multi-phase precipitation structure can improve the strength, toughness and corrosion resistance of the alloys at the same time. The polarization curve is consistent with the conclusion. Therefore, we conducted this study to test how the comprehensive properties of the alloy can be improved.展开更多
The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray dif...The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray diffractometry, transmission electron microscopy and EDS analysis. The results show that the netlike structure of as-cast alloys can be remarkably refined, and the distance of dendritic structure decreases, with Er addition. However, the improvement results on Al-Zn-Mg-Cu are not better than that of Al-Zn-Mg. Er and Al can interact to form Al3Er phase, which is coherent with α(Al) matrix, with trace Er addition to the Al-Zn-Mg alloy. The refinement effect of Al-Zn-Mg alloys is familiar with the formation and precipitation of coherent Al3Er phases. The ternary compound AlCuEr, similar with AlCuSc phase, will form when Er is added to Al-Zn-Mg-Cu alloy, which suppresses the formation of Al3Er phase and doesnt solve in the following heat treatment.展开更多
The microstructure and aging behavior of spray formed Al-Zn-Mg-Cu alloys were investigated as a function of alloying element addition. It is revealed that the grains of the as-deposited alloys are refined with increas...The microstructure and aging behavior of spray formed Al-Zn-Mg-Cu alloys were investigated as a function of alloying element addition. It is revealed that the grains of the as-deposited alloys are refined with increasing Zn element, while the function of Ni addition is to reduce grain boundary particles and eutectic in the as-extruded condition. Particles containing Mg and Zn are found to increase with Zn content increasing, while the role of Ni is to reduce both the number and size of these particles. After uniform heat treatment, parts of educts in grain boundary have melted and the grains have not grown up obviously. After heat extrusion, the microstructure becomes denser and there are many precipitated phases in cross-section while there are second phase arranging along extruded direction in longitudinal section. During artificial aging, the increment of Zn content produces not much effect on peak hardness, in addition to an accelerated overage softening. An addition of about 0.13%Ni, however, gives rise to not only improved peak hardness but also an improvement of property stability at the ageing temperature.展开更多
Three kinds of Al-Zn-Mg-Cu based alloys with 0.22%, 0.36%(Sc+Zr) (mass fraction, %), and without Sc, Zr addition were prepared by ingot metallurgy. By using optical microscopy, transmission electronic microscopy and s...Three kinds of Al-Zn-Mg-Cu based alloys with 0.22%, 0.36%(Sc+Zr) (mass fraction, %), and without Sc, Zr addition were prepared by ingot metallurgy. By using optical microscopy, transmission electronic microscopy and scanning electron microscopy, the effects of microalloying elements of Sc, Zr on the microstructure of super-high-strength Al-Zn-Mg-Cu alloys related to mechanical properties were investigated. The tensile properties and microstructures of the studied alloys under different heat treatment conditions were studied. The addition of minor Sc, Zr results in the formation of Al3(Sc,Zr) particles. These particles are highly effective in refining the microstructures, retarding recrystallization, pinning dislocations and subboundaries. The strength of Al-Zn-Mg-Cu alloys was greatly improved by simultaneously adding minor Sc, Zr, meanwhile the ductility of the studied alloys remains at a higher level. The 0.36%(Sc+Zr) alloys gain the optimal properties after 465 ℃/h solution and 120 ℃/24 h aging. The increment of strength is mainly due to strengthening of fine grain and substructure and precipitation of Al3(Sc, Zr) particles.展开更多
The redistribution and re-precipitation of solute atom during retrogression and reaging of three different Al-Zn-Mg-Cu aluminum alloys were investigated. The results of hardness and tensile strength test indicate that...The redistribution and re-precipitation of solute atom during retrogression and reaging of three different Al-Zn-Mg-Cu aluminum alloys were investigated. The results of hardness and tensile strength test indicate that after pre-aging at 100 ℃ or 120 ℃ and retrogressing at 200 ℃ for various time and re-aging treatment, the hardness and strength of the alloys are all larger than those under pre-aging condition, some of them even exceed the value under peak aging(T6) condition. TEM observation shows that the PFZ formed during retrogressing in short time becomes narrow and even disappears after re-aging treatment. However, the PFZ formed during retrogressing for a long time does not narrow after re-aging treatment. It is suggested that the redistribution and re-precipitation of solute atom during re-aging treatment result in the narrowing and even disappearance of the PFZ formed during retrogression, which reinforces the grain-boundaries and presents the value of tensile strength exceeding peak-aging strength in the RRA condition, while the precipitates in the matrix of the alloys still keep or even exhibit a more dispersed distribution, and a展开更多
The evolution of the eutectic structures in the alloys with different copper contents during heat treatment was studied by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), and differential...The evolution of the eutectic structures in the alloys with different copper contents during heat treatment was studied by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), and differential scanning calorimetry(DSC). The as cast microstructures involve α(Al), eutectic(α(Al) + Mg(Al, Cu, Zn)2) and Al7Cu2Fe. The Al2CuMg particles form during heat treatment. The volume of coarse phases decreases quickly in the initial 12 h during heat treatment. The volume of coarse phases change a little at 400 and 420 ℃. Copper content has a great influence on the evolution of the eutectic. The coarse phases dissolve slowly in alloy with higher copper content.展开更多
The influence of coarse Cu-bearing particles, matrix and subgrain boundary precipitates on the stress corrosion susceptibility of the Al-Zn-Mg-Cu alloys was investigated. The strength of 7150 alloy is about 15 MPa hig...The influence of coarse Cu-bearing particles, matrix and subgrain boundary precipitates on the stress corrosion susceptibility of the Al-Zn-Mg-Cu alloys was investigated. The strength of 7150 alloy is about 15 MPa higher than that of 7010 alloy. The 7010 alloy exhibits higher resistance to stress corrosion cracking as compared with the 7150 alloy. The coarse Cu-bearing particles are detrimental to the resistance to stress corrosion cracking. The increase of size of matrix and subgrain boundary precipitates decreases the susceptibility of stress corrosion. The anodic dissolution and hydrogen embrittlement govern the cracking process. The severity of stress corrosion cracking is shown to be related to the coarse Cu-bearing particles, matrix and subgrain precipitates in Al-Zn-Mg-Cu alloys.展开更多
The electrochemical behavior of two kinds of artificial aged Al-Zn-Mg-Cu alloys in two intergranular corrosion (IGC) solutions were studied using electrochemical impedance spectroscopy (EIS) and open circuit poten...The electrochemical behavior of two kinds of artificial aged Al-Zn-Mg-Cu alloys in two intergranular corrosion (IGC) solutions were studied using electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) at steady-state. EDAX result indicates that different artificial ageing methods change the composition and content of Cu and Zn in different zones. Zn/Cu depleted precipitation-free zone that plays a very important role in IGC is formed by heating the solubilized Al alloy for 135 ℃ at 16 h. All impedance spectra of the two alloys in two IGC solutions can be divided into three types. The two different states Al alloys takes on one time constant and two capacitive arcs at high-mediate frequency and low frequency in the NaCl+(NH4)2SO4 solution respectively; but in the NaCl+HCl solution, impedance displays one capacitive arc at the high-mediate frequency and an inductive loop at low frequency. OCP results show that more micro-galvanic cells in the NaCl+(NH4)2SO4 solution than that in the NaCl+HCl solution results in more potential fluctuation amplitude, and long-term drift of OCP is due to the long-term variation of the cathodic and anodic corrosion processes.展开更多
Center segregation and banded intergranular segregation(B-IGS)should be well controlled to improve the mechanical properties of twin-roll cast(TRC)aluminum alloys,especially for alloys with high solid-ification interv...Center segregation and banded intergranular segregation(B-IGS)should be well controlled to improve the mechanical properties of twin-roll cast(TRC)aluminum alloys,especially for alloys with high solid-ification intervals.In the present work,a synergistic grain refinement strategy was designed using an Al-5Ti-B grain refiner and Ti,Zr,and Sc microalloying elements to simultaneously control center seg-regation and B-IGS in TRC Al-Zn-Mg-Cu alloys.As the grain size decreased,center segregation defects were eliminated and transformed into dispersed B-IGS defects;simultaneously,the width and length of the B-IGS were also reduced.Moreover,the macro-distributions of the alloying elements along the thickness direction became more homogeneous due to a weak shear-induced dilation effect.The well-controlled multiscale segregation improved the uniformity of the alloy macrostructure,accelerated the redissolution of the crystalline phase,dispersed the aggregated residual phase,and refined grains under the T6 state.Hence,the strength and ductility of the alloys under the T6 state were simultaneously improved,and the hardness distribution along the thickness direction became more homogenous.Furthermore,the underlying mechanisms of segregation evolution and strength and ductility enhancements were elucidated.This work provides a novel strategy to effectively control multiscale segregation and produce high-performance aluminum alloys with high solidification intervals by TRC.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFE0115900)the National Natural Science Foundation of China(Nos.52371016,51871029,and 51571023)the Opening Project of State Key Laboratory for Advanced Metals and Materials(Nos.2020-ZD02 and No.2022-Z03).
文摘This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.
基金Project supported by the Open Foundation of CNPC Key Laboratory for Petroleum Tubular Goods Engineering,China
文摘Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests and transmission electron microscopy (TEM). The results show that the ultimate tensile strength, yield strength and elongation for Alloys A, B and C are 736 MPa, 695.5 MPa and 7%; 711 MPa, 674 MPa and 12.5%; 740.5 MPa, 707.5 MPa and 13%, respectively after solid solution treatment ((450 °C, 2 h)+(470 °C, 1 h)) followed by aging at 120 °C for 12 h. The dominant strengthening phases in Alloy A are GPII zone andη′ phase, the main precipitate in Alloy B isη′ phase, and the main precipitates in Alloy C are GPI zone, GPII zone andη′ phase, which are the reason for better comprehensive properties of Alloy C. The increase of zinc content leads to the improvement of the strength. The increase of copper content improves the elongation but slightly decreases the strength. Large second-phase particles formed by the increase in the manganese content induce a decrease in the elongation of alloys.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金This research was supported by the National Key Fun-damental Research Project of China(No.G19990649)National“863”High Technology Program of China(No.2001 A A332030).
文摘The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively.
文摘High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat treatment, mechanical properties increase greatly: tensile strength up to 754 MPa, yield strength up to 722 MPa, fracture elongation up to 8%, and elastic modulus up to 72 GPa, respectively. [
基金This work was financially supported by the Major State Basic Besearch Development Program of China (No.2005CB623704)The authors wish to thank professors Shao B.L.and Liu A.S.(National Analysis and Testing Center for Nonferrous Metals & Electronic Materials,General Research Institute for Nonferrous Metals) for the TEM work,and Li Y.L.(Analysis and Test Center,Beijing Normal University) for SEM work.
文摘High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques. The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Secondary phases in the microstructures of the alloys prepared by spray deposition and conventional cast were examined. The results indicate that under the conventional casting condition, the microstructure of the alloy revealed the presence of coarse Al/Mg(ZnCu)2 eutectic phases, and the spray deposited process causes an obvious modification in size, morphology, and distribution of secondary phases in the microstructure as well as reduction of segregation. The superior microstructure of the spray-deposited Al-Zn-Mg-Cu alloy was attributed to the high cooling rate, and associated with the rapid solidification process.
基金Project(2010CB731706) supported by the National Basic Research Program of China
文摘Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and hardness test. The results show that addition of Ce can remarkably refine the as-cast grains and eutectic microstructure. A transformation from Mg(Zn,Cu,A1)2 phase to A12CuMg phase is observed during homogenization. Furthermore, the Ce addition introduces changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Ce promotes the precipitation of η' phase, but it also partly retards the precipitation of GP zones. The density of precipitates decreases in a certain degree and rod-like η' precipitates increase when Ce content is from 0.2% to 0.4% (mass fraction).
基金financial supports from the National Key Research and Development Program of China(No.2016-YFB0300801)the State Key Laboratory of High Performance Complex Manufacturing of Central South University,China(No.ZZYJKT2020-03)the National Key Laboratory of Science and Technology for National Defence on High-strength Lightweight Structural Materials of China(No.20190104)。
文摘The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with scanning electron microscopy(SEM)and high-angle angular dark field scanning transmission electron microscopy(HAADF-STEM)microstructural examinations.The results showed that the tensile strength enhancement of high Zn-containing Al-Zn-Mg-Cu alloys was mainly attributed to the high density nano-scale matrix precipitates.The SCC plateau velocity for the alloy with 11.0 wt.%Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.%Zn,which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones.The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features,grain-boundary microchemistry,and electrochemical properties.
基金Project(2017YFB0306300) supported by the National key R&D Program of ChinaProjects(51675538, 51905551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2019-11) supported by Free Exploration Project of State Key Laboratory of High performance Complex Manufacturing,China。
文摘A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment.
文摘By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-aging (120°C/24h + 160°C/8h + 120°C/24h), were characterized. It is found that compared with the Al-Zn-Mg-Cu alloys treated by T76 (120°C/24h + 160°C/8h), the new multi-stage aging treatment can improve the tensile strength, fracture toughness, hardness and conductivity of the alloys at the same time. This is mainly due to the pre-aging, over-aging and re-aging process of super high strength aluminum alloys. Compared with the two-stage over aging process, the formation of multi-stage multi-phase precipitation structure can improve the strength, toughness and corrosion resistance of the alloys at the same time. The polarization curve is consistent with the conclusion. Therefore, we conducted this study to test how the comprehensive properties of the alloy can be improved.
文摘The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray diffractometry, transmission electron microscopy and EDS analysis. The results show that the netlike structure of as-cast alloys can be remarkably refined, and the distance of dendritic structure decreases, with Er addition. However, the improvement results on Al-Zn-Mg-Cu are not better than that of Al-Zn-Mg. Er and Al can interact to form Al3Er phase, which is coherent with α(Al) matrix, with trace Er addition to the Al-Zn-Mg alloy. The refinement effect of Al-Zn-Mg alloys is familiar with the formation and precipitation of coherent Al3Er phases. The ternary compound AlCuEr, similar with AlCuSc phase, will form when Er is added to Al-Zn-Mg-Cu alloy, which suppresses the formation of Al3Er phase and doesnt solve in the following heat treatment.
基金Project(2001AA332030) supported by the Hi-tech Research and Development Program of China
文摘The microstructure and aging behavior of spray formed Al-Zn-Mg-Cu alloys were investigated as a function of alloying element addition. It is revealed that the grains of the as-deposited alloys are refined with increasing Zn element, while the function of Ni addition is to reduce grain boundary particles and eutectic in the as-extruded condition. Particles containing Mg and Zn are found to increase with Zn content increasing, while the role of Ni is to reduce both the number and size of these particles. After uniform heat treatment, parts of educts in grain boundary have melted and the grains have not grown up obviously. After heat extrusion, the microstructure becomes denser and there are many precipitated phases in cross-section while there are second phase arranging along extruded direction in longitudinal section. During artificial aging, the increment of Zn content produces not much effect on peak hardness, in addition to an accelerated overage softening. An addition of about 0.13%Ni, however, gives rise to not only improved peak hardness but also an improvement of property stability at the ageing temperature.
基金Project(2002AA305104) supported by the National High-Tech Research and Development Program of China
文摘Three kinds of Al-Zn-Mg-Cu based alloys with 0.22%, 0.36%(Sc+Zr) (mass fraction, %), and without Sc, Zr addition were prepared by ingot metallurgy. By using optical microscopy, transmission electronic microscopy and scanning electron microscopy, the effects of microalloying elements of Sc, Zr on the microstructure of super-high-strength Al-Zn-Mg-Cu alloys related to mechanical properties were investigated. The tensile properties and microstructures of the studied alloys under different heat treatment conditions were studied. The addition of minor Sc, Zr results in the formation of Al3(Sc,Zr) particles. These particles are highly effective in refining the microstructures, retarding recrystallization, pinning dislocations and subboundaries. The strength of Al-Zn-Mg-Cu alloys was greatly improved by simultaneously adding minor Sc, Zr, meanwhile the ductility of the studied alloys remains at a higher level. The 0.36%(Sc+Zr) alloys gain the optimal properties after 465 ℃/h solution and 120 ℃/24 h aging. The increment of strength is mainly due to strengthening of fine grain and substructure and precipitation of Al3(Sc, Zr) particles.
基金Project(2001AA332030) supported by the National Hi-Tech Research and Development Program of China
文摘The redistribution and re-precipitation of solute atom during retrogression and reaging of three different Al-Zn-Mg-Cu aluminum alloys were investigated. The results of hardness and tensile strength test indicate that after pre-aging at 100 ℃ or 120 ℃ and retrogressing at 200 ℃ for various time and re-aging treatment, the hardness and strength of the alloys are all larger than those under pre-aging condition, some of them even exceed the value under peak aging(T6) condition. TEM observation shows that the PFZ formed during retrogressing in short time becomes narrow and even disappears after re-aging treatment. However, the PFZ formed during retrogressing for a long time does not narrow after re-aging treatment. It is suggested that the redistribution and re-precipitation of solute atom during re-aging treatment result in the narrowing and even disappearance of the PFZ formed during retrogression, which reinforces the grain-boundaries and presents the value of tensile strength exceeding peak-aging strength in the RRA condition, while the precipitates in the matrix of the alloys still keep or even exhibit a more dispersed distribution, and a
基金Project(2004AA5BG018) supported by the Science and Technology Development Fund of Harbin, China
文摘The evolution of the eutectic structures in the alloys with different copper contents during heat treatment was studied by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), and differential scanning calorimetry(DSC). The as cast microstructures involve α(Al), eutectic(α(Al) + Mg(Al, Cu, Zn)2) and Al7Cu2Fe. The Al2CuMg particles form during heat treatment. The volume of coarse phases decreases quickly in the initial 12 h during heat treatment. The volume of coarse phases change a little at 400 and 420 ℃. Copper content has a great influence on the evolution of the eutectic. The coarse phases dissolve slowly in alloy with higher copper content.
基金Project(2004AA5BG018) supported by the Science and Technology Development Fund of Harbin, China
文摘The influence of coarse Cu-bearing particles, matrix and subgrain boundary precipitates on the stress corrosion susceptibility of the Al-Zn-Mg-Cu alloys was investigated. The strength of 7150 alloy is about 15 MPa higher than that of 7010 alloy. The 7010 alloy exhibits higher resistance to stress corrosion cracking as compared with the 7150 alloy. The coarse Cu-bearing particles are detrimental to the resistance to stress corrosion cracking. The increase of size of matrix and subgrain boundary precipitates decreases the susceptibility of stress corrosion. The anodic dissolution and hydrogen embrittlement govern the cracking process. The severity of stress corrosion cracking is shown to be related to the coarse Cu-bearing particles, matrix and subgrain precipitates in Al-Zn-Mg-Cu alloys.
文摘The electrochemical behavior of two kinds of artificial aged Al-Zn-Mg-Cu alloys in two intergranular corrosion (IGC) solutions were studied using electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) at steady-state. EDAX result indicates that different artificial ageing methods change the composition and content of Cu and Zn in different zones. Zn/Cu depleted precipitation-free zone that plays a very important role in IGC is formed by heating the solubilized Al alloy for 135 ℃ at 16 h. All impedance spectra of the two alloys in two IGC solutions can be divided into three types. The two different states Al alloys takes on one time constant and two capacitive arcs at high-mediate frequency and low frequency in the NaCl+(NH4)2SO4 solution respectively; but in the NaCl+HCl solution, impedance displays one capacitive arc at the high-mediate frequency and an inductive loop at low frequency. OCP results show that more micro-galvanic cells in the NaCl+(NH4)2SO4 solution than that in the NaCl+HCl solution results in more potential fluctuation amplitude, and long-term drift of OCP is due to the long-term variation of the cathodic and anodic corrosion processes.
基金financially supported by the Major Program of National Natural Science Foundation of China(No.51790485)the Key Research and Development Project of Shandong Province(No.2019JZZY010401)+1 种基金Nanning Science and Technology Major Special Projects(No.20201041)State Key Laboratory of Rolling and Automation(RAL)of Northeastern University.
文摘Center segregation and banded intergranular segregation(B-IGS)should be well controlled to improve the mechanical properties of twin-roll cast(TRC)aluminum alloys,especially for alloys with high solid-ification intervals.In the present work,a synergistic grain refinement strategy was designed using an Al-5Ti-B grain refiner and Ti,Zr,and Sc microalloying elements to simultaneously control center seg-regation and B-IGS in TRC Al-Zn-Mg-Cu alloys.As the grain size decreased,center segregation defects were eliminated and transformed into dispersed B-IGS defects;simultaneously,the width and length of the B-IGS were also reduced.Moreover,the macro-distributions of the alloying elements along the thickness direction became more homogeneous due to a weak shear-induced dilation effect.The well-controlled multiscale segregation improved the uniformity of the alloy macrostructure,accelerated the redissolution of the crystalline phase,dispersed the aggregated residual phase,and refined grains under the T6 state.Hence,the strength and ductility of the alloys under the T6 state were simultaneously improved,and the hardness distribution along the thickness direction became more homogenous.Furthermore,the underlying mechanisms of segregation evolution and strength and ductility enhancements were elucidated.This work provides a novel strategy to effectively control multiscale segregation and produce high-performance aluminum alloys with high solidification intervals by TRC.
基金financially supported by the National Key Research and Development Program of China(No.2020YFB0311201)the National Natural Science Foundation of China(No.51627802)。