In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic propert...W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic properties and microwave absorptive behavior were analyzed.The XRD patterns showed the single phase of W-type barium ferrite when x ≤ 0.15.Microwave electromagnetic properties of samples were studied at the frequency range from 2 GHz to 18 GHz using a network analyzer(Agilent 8722ET).The complex permittivity ε(ε',ε'') increased gradually when x ≤ 0.10,but it decreased as x = 0.15.The real permeability(μ') decreased with the increase of Gd^3+ content,while the imaginary permeability(μ'') increased when x ≤ 0.10.All these reasons were discussed using the electromagnetic theory.Furthermore,the ferrite-epoxy compound coating materials with 80 wt.% of Ba0.9Gd0.1(Zn0.3Co0.7)2Fe16O27 were prepared to measure the microwave absorbing properties.The maximum of reflection loss(RL) reached about-27 dB and RL was below-10 dB in the frequency range of 8-18 GHz when the thickness was 1.92 mm.展开更多
Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted ba...Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.展开更多
Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods, respectively. The composition of the so-obtained materials was investigated by means of XRD. By the sol-gel method, no...Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods, respectively. The composition of the so-obtained materials was investigated by means of XRD. By the sol-gel method, non-anticipated intermediate crystalline phases, such as γ-Fe2O3, α-Fe2O3, BaCO3, and BaFe2O4 etc., were formed with the delay of the formation of BaFe12O19. The formation of single phase BaFe12O19 required calcination at 850 oC for 4 h. On the other hand, using coprecipitation technique, amorphous hydroxide precursor was directly transferred into BaFe12O19 almost without the formation of intermediate crystalline phases. BaFe12O19 was prepared by calcining at 700 oC for 3 h. The results were confirmed by ESEM and VSM analyses. Based on the already reported results and the observed results in this study, it can be concluded that the coprecipitaion technique is easier to control than the sol-gel method for preparation of BaFe12O19 at a low temperature.展开更多
In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysi...In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.展开更多
Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properti...Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properties of Ba M thin films are investigated in detail.It is found that microstructure,magnetic and microwave properties of Ba M thin film are very sensitive to deposition substrate temperature,and excellent Ba M thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 m Torr(1 Torr = 1.3332×102Pa).X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology,and the crystallographic alignment degree can be calculated to be 0.94.Hysteresis loops reveal that the squareness ratio(Mr/Ms) is as high as 0.93,the saturated magnetization is 4004 Gs(1 Gs = 104T),and the anisotropy field is 16.5 kOe(1 Oe = 79.5775 A·m-1).Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe,and the ferromagnetic resonance linewith is108 Oe at 50 GHz,which means that this thin film has low microwave loss.These properties make the Ba M thin films have potential applications in microwave devices.展开更多
In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ...In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ratio (Mr/Ms) are not affected by the thickness of the film. XRD and SEM results show that the thick film has hexagonal morphology with a crystal texture of c-axis grains perpendicular to film plane. The hysteresis curve indicates that the BaM thick film exhibits a self-biased property with a remanent magnetization of 3.30 T, a squareness ratio (Mr/Ms) of 0.81, and a coercivity of 0.40 T. The results show that the BaM thick film has potential for use in self-biasing microwave devices, and also proves that the tape casting technique is capable of fabricating high-quality barium ferrite films, thus providing a unique opportunity to realize the large area production of thick film.展开更多
The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element,...The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe 3+, Ti 4+, Co 2+ and Ba 2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe- 10O- 19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl-anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCo-xTi-xFe- 12-2xO- 19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.展开更多
BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinn...BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.展开更多
Amorphous gels were processed with a varying Fe/Ba ratio of 11/5, 28/2, 10.5/1 in water and Solvent. Iron and barium nitrites with specific molar ratio was solved in water and slovent at 60°C for 3 hours until! a...Amorphous gels were processed with a varying Fe/Ba ratio of 11/5, 28/2, 10.5/1 in water and Solvent. Iron and barium nitrites with specific molar ratio was solved in water and slovent at 60°C for 3 hours until! a dark brown solution was prepared . The sols were introduced to substrate dropwise and spinning with 2000 rpm in 3 min was applied ; the work was repeated for 10 times and the samples were dried and sintered . The TGA analysis was used to identify the heating rate of the samples; at temperature of 1150°c for one hour the final phase was attained . the thickness , uniformity , morphology and the composition were examined by SEM and XRD. The study shows that the fabrication barium ferrite film of the molar ratio of Fe/Ba = 10.5/1 is much more suitable than other ratios .展开更多
A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease...A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.展开更多
The present investigation is concerned with the reaction of barium and iron nitrates mixtures using three different molar ratios, 1:1 (Ⅰ), 1:2 (Ⅱ) and 2:1 (Ⅲ) at different temperatures as pointed out from the DTA d...The present investigation is concerned with the reaction of barium and iron nitrates mixtures using three different molar ratios, 1:1 (Ⅰ), 1:2 (Ⅱ) and 2:1 (Ⅲ) at different temperatures as pointed out from the DTA data. The reaction products exhibit 12 compounds namely, Ba(NO3)2, αFe2O3, Fe3O4, BaFeO3, BaFeO2.9, hexagonal BaFeO3-x, tetragonal BaFeO3-x, BaFe2O4, αBaFe2O4, Ba2Fe6O11, Ba5Fe14O26 and BaFe12O19. The formation of these products depend on the molar ratio between the reactants and the reaction temperature. The reaction products were studied by DTA and TG techniques and characterized by X-ray diffraction patterns, magnetic susceptibility data and scanning electron microscopy, SEM.展开更多
Natural rubber (NR)-barium ferrite (BaF) composites (RFCs) have been prepared. Structural features of the composites were characterized by Infrared spectroscopy and scanning electron microscope (SEM). Differential sca...Natural rubber (NR)-barium ferrite (BaF) composites (RFCs) have been prepared. Structural features of the composites were characterized by Infrared spectroscopy and scanning electron microscope (SEM). Differential scanning calorimetry (DSC) analysis showed that there is small variation of glass transition temperature (≈ –1℃). The activation energy of glass transition was calculated by Kissinger method and has values between (53-110 kJ/mol). Thermodynamic parameters such as activated entropy, enthalpy and Gibbs free energy were calculated for glass transition also. Thermogravimetric analysis TG and its derivative DTG showed one stage thermal decomposition between 300℃-400℃ with weight loss between (19.47%-52.13%). Increasing barium ferrite loading will increase the thermal stability of natural rubber. The kinetic parameters such as activation energy, entropy, enthalpy and Gibbs free energy for composites in the decomposition region were calculated and analyzed using Coats-Redfern technique.展开更多
The polyaniline-barium ferrite composite was synthesized by in situ polymerization of aniline in the presence of BaFe12019 nanoparticles. The structure, morphology, and magnetic properties of samples were characterize...The polyaniline-barium ferrite composite was synthesized by in situ polymerization of aniline in the presence of BaFe12019 nanoparticles. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The testing results showed that the composite exhibited the ferromagnetic and electric behaviors, which benefit for the application of electromagnetic interfence.展开更多
Cobalt substituted barium ferrites, BaCoxFe12-xO19 (x = 0.2, 0.4, 0.6 & 1.0) have been synthesized via citrate sol-gel method. All the samples have been annealed at 1000℃ and characterized using Fourier Transform...Cobalt substituted barium ferrites, BaCoxFe12-xO19 (x = 0.2, 0.4, 0.6 & 1.0) have been synthesized via citrate sol-gel method. All the samples have been annealed at 1000℃ and characterized using Fourier Transform Infra Red spectroscopy, X-Ray Diffractography and Vibrating Sample Magnetometry. The FT-IR spectra of the samples exhibit two frequency bands in the range of 580 cm-1 and 460 cm-1, corresponding to the formation of metal oxides. The XRD studies reveal a crystallite size of ~55 nm. The saturation magnetization decreases from 96.3 emu/g to 47.8 emu/g with increasing concentration of cobalt due to the lower magnetic moment of Co2+ (3 μB) as compared to Fe3+ (5 μB). The coercivity values also show a decreasing behaviour from 3800 Oe to 1750 Oe with increasing cobalt concentration due to reduced magnetocrystalline anisotropy.展开更多
Barium (Bag) ferrite ultra fine powders were synthesized by using sol-gel in which polyethylene glycol 200(PEG200) was used as gelling agent. The transition of Ba ferrite was studied by thermal gravimetric and differe...Barium (Bag) ferrite ultra fine powders were synthesized by using sol-gel in which polyethylene glycol 200(PEG200) was used as gelling agent. The transition of Ba ferrite was studied by thermal gravimetric and differential thermal analysis (TG-DTA) technology. The micro structural changes were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) for the specimens annealed at different temperatures. The transition temperatures were 414.55°C and separately corresponding to BaFe2O4 and BaFe,2O19. There were three types of microstructures for Ba ferrite ultrafine powder specimen annealed at 800°C. For the specimens annealed at different temperatures, there were different kinds of Ba ferrites. The ferrite powder consists of BaFet2O19 and BaFe2O4 for the specimen annealed at 800°C, and only BaFe^O^ can be found in the specimen annealed at 1000°C. The magnetic properties, a , and H c of BaFC|2O19 ultrafine powders are different from that of BaFe12O19 bulk material.展开更多
The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,e...The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.展开更多
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金supported by the Pre-research Foundation of CPLA General Equipment Department (NO.9140A××××6401)
文摘W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic properties and microwave absorptive behavior were analyzed.The XRD patterns showed the single phase of W-type barium ferrite when x ≤ 0.15.Microwave electromagnetic properties of samples were studied at the frequency range from 2 GHz to 18 GHz using a network analyzer(Agilent 8722ET).The complex permittivity ε(ε',ε'') increased gradually when x ≤ 0.10,but it decreased as x = 0.15.The real permeability(μ') decreased with the increase of Gd^3+ content,while the imaginary permeability(μ'') increased when x ≤ 0.10.All these reasons were discussed using the electromagnetic theory.Furthermore,the ferrite-epoxy compound coating materials with 80 wt.% of Ba0.9Gd0.1(Zn0.3Co0.7)2Fe16O27 were prepared to measure the microwave absorbing properties.The maximum of reflection loss(RL) reached about-27 dB and RL was below-10 dB in the frequency range of 8-18 GHz when the thickness was 1.92 mm.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.0452nm049)
文摘Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.
基金the Harbin Engineering University Foundation of Talent(No.HEUFT05082) the Postdoctoral Foundation of Heilongjiang Province, China(No.LRB07-231).
文摘Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods, respectively. The composition of the so-obtained materials was investigated by means of XRD. By the sol-gel method, non-anticipated intermediate crystalline phases, such as γ-Fe2O3, α-Fe2O3, BaCO3, and BaFe2O4 etc., were formed with the delay of the formation of BaFe12O19. The formation of single phase BaFe12O19 required calcination at 850 oC for 4 h. On the other hand, using coprecipitation technique, amorphous hydroxide precursor was directly transferred into BaFe12O19 almost without the formation of intermediate crystalline phases. BaFe12O19 was prepared by calcining at 700 oC for 3 h. The results were confirmed by ESEM and VSM analyses. Based on the already reported results and the observed results in this study, it can be concluded that the coprecipitaion technique is easier to control than the sol-gel method for preparation of BaFe12O19 at a low temperature.
基金Project supported by the National Basic Research Program of China(Grant No.2007CB310407)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.61021061)+1 种基金the National Natural Youth Fund of China(Grant No.61001025)National Programs for Science and Technology Development of Guangdong Province,China(Grant No.2010B090400314)
文摘In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.
基金Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices(Grant No.KFJJ201506)the Scientific Research Starting Foundation of Hainan University(Grant No.kyqd1539)the Natural Science Foundation of Hainan Province(Grant No.20165187)
文摘Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properties of Ba M thin films are investigated in detail.It is found that microstructure,magnetic and microwave properties of Ba M thin film are very sensitive to deposition substrate temperature,and excellent Ba M thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 m Torr(1 Torr = 1.3332×102Pa).X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology,and the crystallographic alignment degree can be calculated to be 0.94.Hysteresis loops reveal that the squareness ratio(Mr/Ms) is as high as 0.93,the saturated magnetization is 4004 Gs(1 Gs = 104T),and the anisotropy field is 16.5 kOe(1 Oe = 79.5775 A·m-1).Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe,and the ferromagnetic resonance linewith is108 Oe at 50 GHz,which means that this thin film has low microwave loss.These properties make the Ba M thin films have potential applications in microwave devices.
基金Project supported by the Foundation of the Ministry of Science and Technology of China (Grant No. 2009GJE00033)the National Natural Youth Fund of China (Grant No. 61001025)the National Program for Science and Technology Development of Guangdong Province,China (Grant No. 2010B090400314)
文摘In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ratio (Mr/Ms) are not affected by the thickness of the film. XRD and SEM results show that the thick film has hexagonal morphology with a crystal texture of c-axis grains perpendicular to film plane. The hysteresis curve indicates that the BaM thick film exhibits a self-biased property with a remanent magnetization of 3.30 T, a squareness ratio (Mr/Ms) of 0.81, and a coercivity of 0.40 T. The results show that the BaM thick film has potential for use in self-biasing microwave devices, and also proves that the tape casting technique is capable of fabricating high-quality barium ferrite films, thus providing a unique opportunity to realize the large area production of thick film.
文摘The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe 3+, Ti 4+, Co 2+ and Ba 2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe- 10O- 19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl-anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCo-xTi-xFe- 12-2xO- 19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.
基金Supported by National Natural Science Foundation of China(No.50506020)Natural Science Foundation of Tianjin(No.043605211)Young Teacher Foundation of Tianjin University(No.5110103)
文摘BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.
文摘Amorphous gels were processed with a varying Fe/Ba ratio of 11/5, 28/2, 10.5/1 in water and Solvent. Iron and barium nitrites with specific molar ratio was solved in water and slovent at 60°C for 3 hours until! a dark brown solution was prepared . The sols were introduced to substrate dropwise and spinning with 2000 rpm in 3 min was applied ; the work was repeated for 10 times and the samples were dried and sintered . The TGA analysis was used to identify the heating rate of the samples; at temperature of 1150°c for one hour the final phase was attained . the thickness , uniformity , morphology and the composition were examined by SEM and XRD. The study shows that the fabrication barium ferrite film of the molar ratio of Fe/Ba = 10.5/1 is much more suitable than other ratios .
基金Funded by National Natural Science Foundation of China (Nos.20801016, 20701013, and 60971020)Postdoctoral Foundation of Heilongjiang Province(No. LRB07-231)Fundamental Research Funds for the Central Universities(No.HEUCF201210010)
文摘A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.
文摘The present investigation is concerned with the reaction of barium and iron nitrates mixtures using three different molar ratios, 1:1 (Ⅰ), 1:2 (Ⅱ) and 2:1 (Ⅲ) at different temperatures as pointed out from the DTA data. The reaction products exhibit 12 compounds namely, Ba(NO3)2, αFe2O3, Fe3O4, BaFeO3, BaFeO2.9, hexagonal BaFeO3-x, tetragonal BaFeO3-x, BaFe2O4, αBaFe2O4, Ba2Fe6O11, Ba5Fe14O26 and BaFe12O19. The formation of these products depend on the molar ratio between the reactants and the reaction temperature. The reaction products were studied by DTA and TG techniques and characterized by X-ray diffraction patterns, magnetic susceptibility data and scanning electron microscopy, SEM.
文摘Natural rubber (NR)-barium ferrite (BaF) composites (RFCs) have been prepared. Structural features of the composites were characterized by Infrared spectroscopy and scanning electron microscope (SEM). Differential scanning calorimetry (DSC) analysis showed that there is small variation of glass transition temperature (≈ –1℃). The activation energy of glass transition was calculated by Kissinger method and has values between (53-110 kJ/mol). Thermodynamic parameters such as activated entropy, enthalpy and Gibbs free energy were calculated for glass transition also. Thermogravimetric analysis TG and its derivative DTG showed one stage thermal decomposition between 300℃-400℃ with weight loss between (19.47%-52.13%). Increasing barium ferrite loading will increase the thermal stability of natural rubber. The kinetic parameters such as activation energy, entropy, enthalpy and Gibbs free energy for composites in the decomposition region were calculated and analyzed using Coats-Redfern technique.
基金This work was supported by the National Nature Science Foundation of China under Grant No.60425102.
文摘The polyaniline-barium ferrite composite was synthesized by in situ polymerization of aniline in the presence of BaFe12019 nanoparticles. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The testing results showed that the composite exhibited the ferromagnetic and electric behaviors, which benefit for the application of electromagnetic interfence.
文摘Cobalt substituted barium ferrites, BaCoxFe12-xO19 (x = 0.2, 0.4, 0.6 & 1.0) have been synthesized via citrate sol-gel method. All the samples have been annealed at 1000℃ and characterized using Fourier Transform Infra Red spectroscopy, X-Ray Diffractography and Vibrating Sample Magnetometry. The FT-IR spectra of the samples exhibit two frequency bands in the range of 580 cm-1 and 460 cm-1, corresponding to the formation of metal oxides. The XRD studies reveal a crystallite size of ~55 nm. The saturation magnetization decreases from 96.3 emu/g to 47.8 emu/g with increasing concentration of cobalt due to the lower magnetic moment of Co2+ (3 μB) as compared to Fe3+ (5 μB). The coercivity values also show a decreasing behaviour from 3800 Oe to 1750 Oe with increasing cobalt concentration due to reduced magnetocrystalline anisotropy.
文摘Barium (Bag) ferrite ultra fine powders were synthesized by using sol-gel in which polyethylene glycol 200(PEG200) was used as gelling agent. The transition of Ba ferrite was studied by thermal gravimetric and differential thermal analysis (TG-DTA) technology. The micro structural changes were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) for the specimens annealed at different temperatures. The transition temperatures were 414.55°C and separately corresponding to BaFe2O4 and BaFe,2O19. There were three types of microstructures for Ba ferrite ultrafine powder specimen annealed at 800°C. For the specimens annealed at different temperatures, there were different kinds of Ba ferrites. The ferrite powder consists of BaFet2O19 and BaFe2O4 for the specimen annealed at 800°C, and only BaFe^O^ can be found in the specimen annealed at 1000°C. The magnetic properties, a , and H c of BaFC|2O19 ultrafine powders are different from that of BaFe12O19 bulk material.
基金supported by the National Natural Science Foundation of China(Nos.:52271180,51802155,12304020)National Key R&D Program of China(No.:2021YFB3502500)+2 种基金Natural Science Foundation of Jiangsu Province(BK20230909)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics.
文摘The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.