Zn_(1-x)Mg_(x)O alloy films are important deep ultraviolet photoelectric materials.In this work,we used plasma-assisted molecular beam epitaxy to prepare Zn_(1-x)Mg_(x)O films with different magnesium contents on pola...Zn_(1-x)Mg_(x)O alloy films are important deep ultraviolet photoelectric materials.In this work,we used plasma-assisted molecular beam epitaxy to prepare Zn_(1-x)Mg_(x)O films with different magnesium contents on polar(0001)and nonpolar(1010)ZnO substrates.The nanoscale structural features of the grown alloy films as well as the interfaces were investigated.It was observed that the cubic phases of the alloy films emerged when the Mg content reached 20%and 37%for the alloy films grown on the(0001)and(1010)ZnO substrates,respectively.High-resolution transmission electron microscopy images revealed cubic phases without visible hexagonal phases for the alloy films with more than 70%magnesium,and the cubic phases exhibited three-fold and two-fold rotations for the alloy films on the polar(0001)and nonpolar(1010)ZnO substrates,respectively.This work aims to provide references for monitoring the Zn_(1-x)Mg_(x)O film structure with respect to different substrate orientations.展开更多
A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary...A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary phase including SrxCa1-xTiO3(0≤x≤1)solid solution and TiO2 co-exist in composite and form a stable composite system when the(CaxSr1-x)(0≤x≤1)substitutes for Zn of Li2ZnTi3O8 ceramic.As x is increased from 0 to 1,the relative permittivity(εr)increases from 26.65 to 27.12,and the quality factor(Q×f)increases from 63300 to 66600 GHz.With the increased of x,the temperature coefficient of resonant frequency(τf)increases from 0.27 to 8.23 ppm/℃,and then decreases to 3.51 ppm/℃.On the whole,the Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics show excellent comprehensive properties of middleεr=25-27,higher Q×f≥60000 GHz andτf≤±8.5 ppm/℃.展开更多
Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(C...Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(Cu2O)1-x deposition. Room-temperature ferromagnetism(FM) is found in all of the samples. The saturated magnetization increases at first and then decreases with the decrease of x. The photoluminescence spectra show that the magnetization is closely correlated with the Cu vacancies in the Cux(Cu2O)1-x granular films. Fundamentally, the FM could be understood by the Stoner model based on the charge transfer mechanism. These results may provide solid evidence and physical insights on the origin of FM in the Cu2O-based oxides diluted magnetic semiconductors, especially for systems without intentional magnetic atom doping.展开更多
Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spe...Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11804050).
文摘Zn_(1-x)Mg_(x)O alloy films are important deep ultraviolet photoelectric materials.In this work,we used plasma-assisted molecular beam epitaxy to prepare Zn_(1-x)Mg_(x)O films with different magnesium contents on polar(0001)and nonpolar(1010)ZnO substrates.The nanoscale structural features of the grown alloy films as well as the interfaces were investigated.It was observed that the cubic phases of the alloy films emerged when the Mg content reached 20%and 37%for the alloy films grown on the(0001)and(1010)ZnO substrates,respectively.High-resolution transmission electron microscopy images revealed cubic phases without visible hexagonal phases for the alloy films with more than 70%magnesium,and the cubic phases exhibited three-fold and two-fold rotations for the alloy films on the polar(0001)and nonpolar(1010)ZnO substrates,respectively.This work aims to provide references for monitoring the Zn_(1-x)Mg_(x)O film structure with respect to different substrate orientations.
基金Funded by the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(No.KLIFMD201606)the Open Fund of National Innovation Platform(No.2017YJ163)+1 种基金the National Natural Science Foundation of China(Nos.51502220,51521001,and 51672197)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.TAM201802)。
文摘A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary phase including SrxCa1-xTiO3(0≤x≤1)solid solution and TiO2 co-exist in composite and form a stable composite system when the(CaxSr1-x)(0≤x≤1)substitutes for Zn of Li2ZnTi3O8 ceramic.As x is increased from 0 to 1,the relative permittivity(εr)increases from 26.65 to 27.12,and the quality factor(Q×f)increases from 63300 to 66600 GHz.With the increased of x,the temperature coefficient of resonant frequency(τf)increases from 0.27 to 8.23 ppm/℃,and then decreases to 3.51 ppm/℃.On the whole,the Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics show excellent comprehensive properties of middleεr=25-27,higher Q×f≥60000 GHz andτf≤±8.5 ppm/℃.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104148,51101088,and 51171082)the Tianjin Natural Science Foundation,China(Grant Nos.14JCZDJC37700 and 13JCQNJC02800)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110031110034)the Fundamental Research Funds for the Central Universities,China
文摘Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(Cu2O)1-x deposition. Room-temperature ferromagnetism(FM) is found in all of the samples. The saturated magnetization increases at first and then decreases with the decrease of x. The photoluminescence spectra show that the magnetization is closely correlated with the Cu vacancies in the Cux(Cu2O)1-x granular films. Fundamentally, the FM could be understood by the Stoner model based on the charge transfer mechanism. These results may provide solid evidence and physical insights on the origin of FM in the Cu2O-based oxides diluted magnetic semiconductors, especially for systems without intentional magnetic atom doping.
基金Project supported by the National Natural Science Foundation of China(Grant No.60976016)the Postdoctoral Science Foundation of China(Grant No.2012M511250)the Foundation Co-established by Henan Province and the Ministry of Henan University,China(Grant No.SBGJ090503)
文摘Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.