ABSTRAC Two new complexes [Cd(2,4'-bpdc)(DPPZ)]2n·n H2O(1) and [Zn(2,4'-Hbpdc)2(DPPZ)]· H2O(DPPZ = dipyrido[3,2-a:2',3'-c]phenazine, 2,4'-H2bpdc = 2,4'-biphenyldicarboxylic acid) have been...ABSTRAC Two new complexes [Cd(2,4'-bpdc)(DPPZ)]2n·n H2O(1) and [Zn(2,4'-Hbpdc)2(DPPZ)]· H2O(DPPZ = dipyrido[3,2-a:2',3'-c]phenazine, 2,4'-H2bpdc = 2,4'-biphenyldicarboxylic acid) have been hydrothermally synthesized. The structure of complex 1 was determined by single-crystal X-ray diffraction diffraction and further characterized by elemental analysis, IR spectrum, powder X-ray diffraction(XRD) and single-crystal X-ray diffraction. Complex 1 has 1D chains, which are further connected by π-π stacking interactions of neighbouring chains, generating a steady 3D supramolecular structure. Complex 2 shows the isolated mononuclear units, which are further extended to a 2D supramolecular layered structure through π-π stacking interactions and hydrogen bonds. Furthermore, complexes 1 and 2 exhibit green photoluminescent properties at room temperature.展开更多
The formation of heterobimetallic ruthenium?complex was investigated by absorption and emission spectra. As an intercalator of DNA, the luminescent monometallic ruthenium?complex [Ru(bpy)2tpphz]2+could coordinate with...The formation of heterobimetallic ruthenium?complex was investigated by absorption and emission spectra. As an intercalator of DNA, the luminescent monometallic ruthenium?complex [Ru(bpy)2tpphz]2+could coordinate with Zn2+to form the nonluminescent heterobimetallic complex [Ru(bpy)2(tpphz)Zn]4+. The emission intensity of complex decreased as increasing the amounts of Zn2+and the luminescence was almost lost at the ratio of / of 1. After binding to DNA, the peripheral coordination site on the tpphz ligand remained accessible for Zn2+, the coordination occurred from the oppsite side of helix with respect to intercalated [Ru(bpy)2tpphz]2+and the nonluminescent heterobimetallic complex was formed. On the other hand, the [Ru(bpy)2(tpphz)Zn]4+also bound to DNA by intercalation and situated the region of the intercalated [Ru(bpy)2tpphz]2+between the base pairs of DNA. The complex looked like a molecular nut (the Zn2+) and bolt (the [Ru(bpy)2tpphz]2+).展开更多
A new metal-organic coordination polymer [Zn(pzdc)(mbix)]n·nH2O(H2pzdc = pyrazine-2,3- dicarboxylic acid, mbix = 1,3-bis(imidazol-1-ylmethyl)-benzene) 1 has been hydrothermally synthesized and structurall...A new metal-organic coordination polymer [Zn(pzdc)(mbix)]n·nH2O(H2pzdc = pyrazine-2,3- dicarboxylic acid, mbix = 1,3-bis(imidazol-1-ylmethyl)-benzene) 1 has been hydrothermally synthesized and structurally characterized by elemental analysis, IR, TG, fluorescence spectrum and single-crystal X-ray diffraction. Yellow crystals crystallize in monoclinic system, space group P21/n with a = 8.5519(6), b = 14.8764(10), c = 16.4108(11) A, β = 103.4520(10)o, V = 2030.5(2)A^3, C(20)H(18)N6O5Zn, Mr = 487.77, Dc = 1.596 g/cm^3, F(000) = 1000, Z = 4, μ(MoK α) = 1.257 mm^-1, the final R = 0.0260 and w R = 0.0706 for 3445 observed reflections(I 〉 2σ(I)). The structure of 1 exhibits a one-dimensional chain-like structure. In addition, natural bond orbital(NBO) analysis was performed by the PBE0/LANL2DZ method in Gaussian 03 Program. The calculation results show obvious covalent interaction between the coordinated atoms and Zn(Ⅱ) ion.展开更多
In this paper, proton transfer mechanism of alanine induced by Zn2+ was investiga- ted by the CCSD/6-31++G**//B3LYP/6-31++G** method. Six neutral complexes and one ampho- teric complex were optimized, among w...In this paper, proton transfer mechanism of alanine induced by Zn2+ was investiga- ted by the CCSD/6-31++G**//B3LYP/6-31++G** method. Six neutral complexes and one ampho- teric complex were optimized, among which the amphoteric complex was the most stable with binding energy of 201.92 kcal·mol-1. In addition, the rotation of intramolecular single bond leads to the neutral configuration conversion, in which the rotation energy barriers of C–C single bonds are lower than 10.51 kcal·mol-1, and those of C–O single bonds range among 9.53~17.50 kcal·mol-1. On the other hand, the proton transfers among the carboxylic oxygen atoms can also result in the neutral configuration conversion, whose energy barriers of forward/back reaction are 53.90 and 32.46 kcal·mol-1, respectively. In detail, the proton transfers from carboxylic group to amino lead to their configuration conversion from neutral to amphoteric. Furthermore, under the catalysis of Zn2+, there was no energy barrier in this reaction. The conversion route from the most stable neutral configuration Ⅱ to the most stable amphoteric configuration I was: Ⅱ→Ⅱ-Ⅲ→Ⅲ→Ⅲ-Ⅵ→Ⅵ→Ⅴ-Ⅵ→Ⅴ→Ⅰ-Ⅴ→Ⅰ,with the energy barrier to be 64.64 kcal·mol-1.展开更多
Solid complex Zn(Thr)SO 4·H 2O was prepared in a water acetone system. Under linearly increasing temperature, the non isothermal kinetics and the decomposition mechanism of Zn(Thr)SO 4·H 2O were studie...Solid complex Zn(Thr)SO 4·H 2O was prepared in a water acetone system. Under linearly increasing temperature, the non isothermal kinetics and the decomposition mechanism of Zn(Thr)SO 4·H 2O were studied by means of thermogravimetry and IR spectrometry. The thermal decomposition processes of the complex could be divided into three stages. The non isothermal decomposition mechanism and the kinetics parameters of the ligand lost process were obtained from an analysis to the TG DTG curves at various heating rates of 5 0, 10 0, 15 0 and 20 0 K/min by two integral and three differential methods. The results show that the random nucleation and the subsequent growth mechanism ( n =3/2) controlled the ligand lost process, the corresponding activation energy E and pre exponential constant A are 139 96 kJ/mol and 10 11 32 s -1 , respectively. The empirical kinetics model equation was constructed.展开更多
基金Supported by the Program for NNSFC(21407064,21576112)NSF of Jilin Province(20130521019JH)the Science and Technology Development Plan of Siping City(2014052,2015049)
文摘ABSTRAC Two new complexes [Cd(2,4'-bpdc)(DPPZ)]2n·n H2O(1) and [Zn(2,4'-Hbpdc)2(DPPZ)]· H2O(DPPZ = dipyrido[3,2-a:2',3'-c]phenazine, 2,4'-H2bpdc = 2,4'-biphenyldicarboxylic acid) have been hydrothermally synthesized. The structure of complex 1 was determined by single-crystal X-ray diffraction diffraction and further characterized by elemental analysis, IR spectrum, powder X-ray diffraction(XRD) and single-crystal X-ray diffraction. Complex 1 has 1D chains, which are further connected by π-π stacking interactions of neighbouring chains, generating a steady 3D supramolecular structure. Complex 2 shows the isolated mononuclear units, which are further extended to a 2D supramolecular layered structure through π-π stacking interactions and hydrogen bonds. Furthermore, complexes 1 and 2 exhibit green photoluminescent properties at room temperature.
文摘The formation of heterobimetallic ruthenium?complex was investigated by absorption and emission spectra. As an intercalator of DNA, the luminescent monometallic ruthenium?complex [Ru(bpy)2tpphz]2+could coordinate with Zn2+to form the nonluminescent heterobimetallic complex [Ru(bpy)2(tpphz)Zn]4+. The emission intensity of complex decreased as increasing the amounts of Zn2+and the luminescence was almost lost at the ratio of / of 1. After binding to DNA, the peripheral coordination site on the tpphz ligand remained accessible for Zn2+, the coordination occurred from the oppsite side of helix with respect to intercalated [Ru(bpy)2tpphz]2+and the nonluminescent heterobimetallic complex was formed. On the other hand, the [Ru(bpy)2(tpphz)Zn]4+also bound to DNA by intercalation and situated the region of the intercalated [Ru(bpy)2tpphz]2+between the base pairs of DNA. The complex looked like a molecular nut (the Zn2+) and bolt (the [Ru(bpy)2tpphz]2+).
基金supported by the Science and Technology Development Project of Jilin Provincial Science&Technology Department(201205080)the Science and Technology Research Projects of the Education Office of Jilin Province(No.2013.384)
文摘A new metal-organic coordination polymer [Zn(pzdc)(mbix)]n·nH2O(H2pzdc = pyrazine-2,3- dicarboxylic acid, mbix = 1,3-bis(imidazol-1-ylmethyl)-benzene) 1 has been hydrothermally synthesized and structurally characterized by elemental analysis, IR, TG, fluorescence spectrum and single-crystal X-ray diffraction. Yellow crystals crystallize in monoclinic system, space group P21/n with a = 8.5519(6), b = 14.8764(10), c = 16.4108(11) A, β = 103.4520(10)o, V = 2030.5(2)A^3, C(20)H(18)N6O5Zn, Mr = 487.77, Dc = 1.596 g/cm^3, F(000) = 1000, Z = 4, μ(MoK α) = 1.257 mm^-1, the final R = 0.0260 and w R = 0.0706 for 3445 observed reflections(I 〉 2σ(I)). The structure of 1 exhibits a one-dimensional chain-like structure. In addition, natural bond orbital(NBO) analysis was performed by the PBE0/LANL2DZ method in Gaussian 03 Program. The calculation results show obvious covalent interaction between the coordinated atoms and Zn(Ⅱ) ion.
基金supported by New Biological and Chemical Technology Key Laboratory of Tangshan(12150224B-2)Science Foundation of Tangshan Normal University(2013D02)
文摘In this paper, proton transfer mechanism of alanine induced by Zn2+ was investiga- ted by the CCSD/6-31++G**//B3LYP/6-31++G** method. Six neutral complexes and one ampho- teric complex were optimized, among which the amphoteric complex was the most stable with binding energy of 201.92 kcal·mol-1. In addition, the rotation of intramolecular single bond leads to the neutral configuration conversion, in which the rotation energy barriers of C–C single bonds are lower than 10.51 kcal·mol-1, and those of C–O single bonds range among 9.53~17.50 kcal·mol-1. On the other hand, the proton transfers among the carboxylic oxygen atoms can also result in the neutral configuration conversion, whose energy barriers of forward/back reaction are 53.90 and 32.46 kcal·mol-1, respectively. In detail, the proton transfers from carboxylic group to amino lead to their configuration conversion from neutral to amphoteric. Furthermore, under the catalysis of Zn2+, there was no energy barrier in this reaction. The conversion route from the most stable neutral configuration Ⅱ to the most stable amphoteric configuration I was: Ⅱ→Ⅱ-Ⅲ→Ⅲ→Ⅲ-Ⅵ→Ⅵ→Ⅴ-Ⅵ→Ⅴ→Ⅰ-Ⅴ→Ⅰ,with the energy barrier to be 64.64 kcal·mol-1.
基金Supported by the National Natural Science Foundation of China(No.2 98710 32 and2 0 1710 36 ) and the EducationalSpecial Foundation of Shaanxi Province(No.0 1H0 8)
文摘Solid complex Zn(Thr)SO 4·H 2O was prepared in a water acetone system. Under linearly increasing temperature, the non isothermal kinetics and the decomposition mechanism of Zn(Thr)SO 4·H 2O were studied by means of thermogravimetry and IR spectrometry. The thermal decomposition processes of the complex could be divided into three stages. The non isothermal decomposition mechanism and the kinetics parameters of the ligand lost process were obtained from an analysis to the TG DTG curves at various heating rates of 5 0, 10 0, 15 0 and 20 0 K/min by two integral and three differential methods. The results show that the random nucleation and the subsequent growth mechanism ( n =3/2) controlled the ligand lost process, the corresponding activation energy E and pre exponential constant A are 139 96 kJ/mol and 10 11 32 s -1 , respectively. The empirical kinetics model equation was constructed.