The study of the linear and nonlinear optical properties of Zn Ge P2 based on density functional theory has been carried out. In order to get a more physical picture in the infrared region, terms which are considered ...The study of the linear and nonlinear optical properties of Zn Ge P2 based on density functional theory has been carried out. In order to get a more physical picture in the infrared region, terms which are considered as the phonon effect were added to the calculated refractive dispersion curves. The phonon-corrected calculation curves show excellent agreement with experimental refractive indexes, which gives a better comprehension of the linear optical proprieties in the transparent region. The static nonlinear optical susceptibility was investigated using approaches based on the "sum over states" and the2 n + 1 theorem methods. Both of the results of these two methods reasonably coincided with the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51202250)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.13J131211)
文摘The study of the linear and nonlinear optical properties of Zn Ge P2 based on density functional theory has been carried out. In order to get a more physical picture in the infrared region, terms which are considered as the phonon effect were added to the calculated refractive dispersion curves. The phonon-corrected calculation curves show excellent agreement with experimental refractive indexes, which gives a better comprehension of the linear optical proprieties in the transparent region. The static nonlinear optical susceptibility was investigated using approaches based on the "sum over states" and the2 n + 1 theorem methods. Both of the results of these two methods reasonably coincided with the experimental results.