This paper is concerned with the improvement of dye-sensitized solar cell (DSSC) efficiency upon ZnO-coating of the TiO2 electrode. Sol-gel ZnO of controlled amount by varying the number of sol drops during spin-coati...This paper is concerned with the improvement of dye-sensitized solar cell (DSSC) efficiency upon ZnO-coating of the TiO2 electrode. Sol-gel ZnO of controlled amount by varying the number of sol drops during spin-coating is shown to increase the DSSC efficiency. The highest efficiency is obtained at a single sol drop with enhancement of 40%, while beyond this amount the efficiency falls down sharply to zero. Based on measured optical absorption spectra of the different dye-loaded electrodes, it is concluded that this amount of ZnO sol corresponds to the thinnest layer that can create the energy barrier to minimize the electron recombination rate without seriously affecting the dye adsorption efficiency of the TiO2 film.展开更多
Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precu...Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.展开更多
Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2&...Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.展开更多
CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization...CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation.展开更多
文摘This paper is concerned with the improvement of dye-sensitized solar cell (DSSC) efficiency upon ZnO-coating of the TiO2 electrode. Sol-gel ZnO of controlled amount by varying the number of sol drops during spin-coating is shown to increase the DSSC efficiency. The highest efficiency is obtained at a single sol drop with enhancement of 40%, while beyond this amount the efficiency falls down sharply to zero. Based on measured optical absorption spectra of the different dye-loaded electrodes, it is concluded that this amount of ZnO sol corresponds to the thinnest layer that can create the energy barrier to minimize the electron recombination rate without seriously affecting the dye adsorption efficiency of the TiO2 film.
文摘Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.
文摘Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.
基金supported by the National Natural Science Foundation of China (U22A20142)the Fundamental Research Funds for the Central Universities (2023JC007)。
文摘CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation.