期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of Annealing Temperature on the Structural,Optical,and Electrical Properties of ZnO Thin Films Grown on n-Si<100>Substrates by the Sol–Gel Spin Coating Method 被引量:4
1
作者 Aniruddh Bahadur Yadav Amritanshu Pandey S.Jit 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期682-688,共7页
The effects of annealing temperature on the sol–gel-derived ZnO thin films deposited on n-Sh100 i substrates by sol–gel spin coating method have been studied in this paper.The structural,optical,and electrical prope... The effects of annealing temperature on the sol–gel-derived ZnO thin films deposited on n-Sh100 i substrates by sol–gel spin coating method have been studied in this paper.The structural,optical,and electrical properties of ZnO thin films annealed at 450,550,and 650 °C in the Ar gas atmosphere have been investigated in a systematic way.The XRD analysis shows a polycrystalline nature of the films at all three annealing temperatures.Further,the crystallite size is observed to be increased with the annealing temperature,whereas the positions of various peaks in the XRD spectra are found to be red-shifted with the temperature.The surface morphology studied through the scanning electron microscopy measurements shows a uniform distribution of ZnO nanoparticles over the entire Si substrates of enhanced grain sizes with the annealing temperature.Optical properties investigated by photoluminescence spectroscopy shows an optical band gap varying in the range of 3.28–3.15 eV as annealing temperature is increased from 450 to 650 °C,respectively.The fourpoint probe measurement shows a decrease in resistivity from 2:1 10 2to 8:1 10 4X cm with the increased temperature from 450 to 650 °C.The study could be useful for studying the sol–gel-derived ZnO thin film-based devices for various electronic,optoelectronic,and gas sensing applications. 展开更多
关键词 nanocrystalline zno thin film Sol–gel Annealing Surface morphology Photoluminescence(PL) Resistivity Grain size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部