ZnO nanorod arrays (NRs) were synthesized on the fluorine-doped SnO2 transparent conductive glass (FTO) by a simple chemical bath deposition (CBD) method combined with alkali-etched method in potassium hydroxide...ZnO nanorod arrays (NRs) were synthesized on the fluorine-doped SnO2 transparent conductive glass (FTO) by a simple chemical bath deposition (CBD) method combined with alkali-etched method in potassium hydroxide (KOH) solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and current-voltage (I-V) curve were used to characterize the structure, morphologies and optoelectronic properties. The results demonstrated that ZnO NRs had wurtzite structures, the morphologies and photovoltaic properties of ZnO NRs were closely related to the concentration of KOH and etching time, well-aligned and uniformly distributed ZnO NRs were obtained after etching with 0.1 mol/L KOH for 1 h. ZnO NRs treated by KOH had been proved to have superior photovoltaic properties compared with high density ZnO NRs. When using ZnO NRs etched with 0.1 mol/L KOH for 1 h as the anode of solar cell, the conversion efficiency, short circuit current and open circuit voltage, compared with the unetched ZnO NRs, increased by 0.71%, 2.79 mA and 0.03 V, respectively.展开更多
Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap ...Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap semiconductors(WBGSs)with three-dimensional(3-D)nanostructures are ideal candidates for increasing the ECE of BCs.This paper proposes hydrothermally grown ZnO nanorod arrays(ZNRAs)for ^(63)Ni-powered BCs.A quantitative model was established for simulation using the parameter values of the dark characteristics,which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure.Monte Carlo(MC)modeling and simulation were conducted to obtain the values of the β energy deposited in ZNRAs with different nanorod spacings and heights.Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures,the performance of the ^(63)Ni-powered BCs based on both structures was evaluated using a quantitative model.The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ECE of 10.1%and 4.69%,respectively,which indicates the significant superiority of 3-D nanostructured WBGSs in increasing the ECE of BCs.展开更多
Highly oriented ZnO nanorod arrays were successfully prepared on the indium tin oxide (ITO) substrate using a galvanostatic electrodeposition method. The ITO substrate was pretreated with ZnO nanoparticles via simpl...Highly oriented ZnO nanorod arrays were successfully prepared on the indium tin oxide (ITO) substrate using a galvanostatic electrodeposition method. The ITO substrate was pretreated with ZnO nanoparticles via simple low-temperature solution route. The crystallinity, microstructure of surface, and optical properties of the obtained ZnO were characterized by X-ray diffraction, scanning electron microscope, and transmittance spectrum. The results indicate that the average diameter of ZnO nanorod arrays is about 30 nm, and the narrow size distribution ranges from 20 to 50 nm. The nanorod arrays are growing along wavelength of incident is over 380 nm, the ZnO nanorod arrays growth mechanism of the nanorod arrays was discussed. [001] direction with an orientation perpendicular to the substrate. When the show a high optical transmission of above 95%. Furthermore, the possible展开更多
Lithography is a pivotal micro/nanomanufacturing technique,facilitating performance enhancements in an extensive array of devices,encompassing sensors,transistors,and photovoltaic devices.The key to creating highly pr...Lithography is a pivotal micro/nanomanufacturing technique,facilitating performance enhancements in an extensive array of devices,encompassing sensors,transistors,and photovoltaic devices.The key to creating highly precise,multiscale-distributed patterned structures is the precise control of the lithography process.Herein,high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography.By optimizing these parameters,ZnO nanorod arrays with line/hole arrangements are successfully prepared.Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure,enlarged surface area,and improved light capture ability,which achieve highly efficient energy conversion in perovskite solar cells.The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.展开更多
A full-duplex radiant energy converter based on both betavoltaic and photovoltaic effects in an easyto-implement way is an attractive alternative for the autonomous wireless sensor microsystem.Here,we report a novel b...A full-duplex radiant energy converter based on both betavoltaic and photovoltaic effects in an easyto-implement way is an attractive alternative for the autonomous wireless sensor microsystem.Here,we report a novel beta/photovoltaic cell based on free-standing Zn O nanorod arrays(ZNRAs)modified with metallic single-walled carbon nanotubes(m-SWCNTs),using radioisotope63 Ni as beta-emitting source.The ZNRAs were grown on Al-doped Zn O(AZO)conductive glass using hydrothermal method.The optimum length and diameter of Zn O nanorods were determined by Monte Carlo simulation for beta energy deposition in ZNRAs.The m-SWCNTs were anchored into the ZNRAs to form a three-dimensional(3-D)Schottky junction structure for effectively separating the beta/photo-excited electron-hole pairs.Experimentally,the betavoltaic and photovoltaic effects were confirmed through the I-V measurements of beta/photovoltaic cells under beta/UV/Vis irradiations,respectively.It is suggested that the m-SWCNTs play key role for the enhancement of beta/photovoltaic performance through the formation of extensive3-D Schottky junction,the conductive network for hole transport,and the surface plasmon resonance exciton absorption for visible light.展开更多
Porous silicon pillar array(PSPA) samples which are ideal substantial materials with dominant electronic and luminescence properties were prepared by surface etching method. ZnO nanorods with or without Mn doping gr...Porous silicon pillar array(PSPA) samples which are ideal substantial materials with dominant electronic and luminescence properties were prepared by surface etching method. ZnO nanorods with or without Mn doping grown uniformly and aligned onto PSPA regardless of lattice matching show various photoluminescence(PL)properties. The doped Mn ions in ZnO nanorods were directly observed by X-ray photoelectron spectroscopy(XPS),and ZnO structures were detected by X-ray diffraction(XRD). As the doping concentration increases,XRD peaks of ZnO nanorods shift to low angle. The influences of doping Mn ions on luminescence properties of ZnO nanorods were investigated. Except for the ultraviolet(UV) PL band, the broad PL band is observed at visible region. The band could be divided into three separate bands(orange, green and red) by Lorentzian deconvolution. The intensity of orange PL band firstly increases then decreases, and then gets the maximum at the doping Mn-to-Zn molar ratio of 2.0:100.0 which is the most effective doping concentration. The green PL band is attributed to zinc vacancy of ZnO, the orange PL band to Mn ions recombination of itself, and the red PL band to oxygen vacancy of ZnO, respectively. As the Mn-doped ZnO nanorods could emit yellow green luminescence excited by UV radiation, and doped Mn ions could improve the color rendering index of the luminescence, the nanorods could be used as promising white-light emitters in the future.展开更多
Light capture and electron recombination are the essential processes that determine power conversion efficiency (PCE) in quantum dot sensitized solar cells (QD- SCs). It is well known that charges are easily trans...Light capture and electron recombination are the essential processes that determine power conversion efficiency (PCE) in quantum dot sensitized solar cells (QD- SCs). It is well known that charges are easily transported in well-built QDSCs based on nauorod arrays. However, this advantage can be drastically weakened by defects located at the zinc oxide (ZnO) array surface which permit faster electron recombination. Hence, we developed a composite nanostructure consisting of ZnO nanorods coated with orthorhombic configuration titanium dioxide (TiO2) nanopartides, which were synthesized using a solution of H3BO3 and (NH4)2TiF6. This composite nanostructure was designed to take the advantage of the enlarged surface area provided by the nanoparticles and improved electron transport along the nanorods, in order to yield good charge transport and light harvesting. At the same time, the TiO2/ZnO nanorod arrays have fewer recombination centers (hydroxyl groups) after TiO2 modification, which results in fewer electron trapping events at the ZnO nanorod surface; thereby, a reduced charge recombination and longer electron lifetime can be achieved. As a result, the PCE of the QDSCs with TiO2-nanopartides-decorated ZnO nanorod arrays photoelectrode reaches 4.8%, which is ~78% higher efficiency compared to 2.7% for solar cells without modification.展开更多
ZnO is a typical direct wide-bandgap semiconductor material, which has various morphologies and unique physical and chemical properties, and is widely used in the fields of energy, information technology, biomedicine,...ZnO is a typical direct wide-bandgap semiconductor material, which has various morphologies and unique physical and chemical properties, and is widely used in the fields of energy, information technology, biomedicine, and others. The precise design and controllable fabrication of nanostructures have gradually become important avenues to further enhancing the performance of Zn O-based functional nanodevices. This paper introduces the continuous development of patterning technologies, provides a comprehensive review of the optical lithography and laser interference lithography techniques for the controllable fabrication of Zn O nanostructures, and elaborates on the potential applications of such patterned Zn O nanostructures in solar energy, water splitting, light emission devices, and nanogenerators. Patterned Zn O nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which realize the efficient carrier regulation,achieve highly efficient energy conversion, and meet the diverse requirements of functional nanodevices. The patterning techniques proposed for the precise design of Zn O nanostructures not only have important guiding significance for the controllable fabrication of complex nanostructures of other materials, but also open up a new route for the further development of functional nanostructures.展开更多
An ultraviolet (UV)-visible tunable photodetec- tor based on ZnO nanorod arrays (NAs)/perovskite hetero- junction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method...An ultraviolet (UV)-visible tunable photodetec- tor based on ZnO nanorod arrays (NAs)/perovskite hetero- junction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method and an- nealed in different atmospheres. Based on solar cell structure perovskite photodetectors, it exhibited highly repeatable and stable photoelectric response characteristics. In addition, the devices with ZnO NAs annealed in a vacuum showed a high responsivity of about 1014 cm Hz1/2 W-1 in the visible region, whereas the devices with ZnO NAs annealed in air exhib- Red good detectivity in the UV region, especially at around 350 nm. Furthermore, when the annealing atmosphere of the ZnO nanorods was changed from vacuum to air, the domi- nant detection region of the photodetectors was altered from the visible to the ultraviolet region. These results enable po- tential applications of the ZnO NAs/perovskite photodetec- tors in ultraviolet and visible regions.展开更多
基金Project (21171027) supported by the National Natural Science Foundation of ChinaProject (K1001020-11) supported by the Science and Technology Key Project of Changsha City, ChinaProject ([2010]70) supported by Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China
文摘ZnO nanorod arrays (NRs) were synthesized on the fluorine-doped SnO2 transparent conductive glass (FTO) by a simple chemical bath deposition (CBD) method combined with alkali-etched method in potassium hydroxide (KOH) solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and current-voltage (I-V) curve were used to characterize the structure, morphologies and optoelectronic properties. The results demonstrated that ZnO NRs had wurtzite structures, the morphologies and photovoltaic properties of ZnO NRs were closely related to the concentration of KOH and etching time, well-aligned and uniformly distributed ZnO NRs were obtained after etching with 0.1 mol/L KOH for 1 h. ZnO NRs treated by KOH had been proved to have superior photovoltaic properties compared with high density ZnO NRs. When using ZnO NRs etched with 0.1 mol/L KOH for 1 h as the anode of solar cell, the conversion efficiency, short circuit current and open circuit voltage, compared with the unetched ZnO NRs, increased by 0.71%, 2.79 mA and 0.03 V, respectively.
基金supported by the National Natural Science Foundation of China(Nos.12175190 and U2241284)the National Key R&D Program of China(Nos.SQ2022YFB190165)+1 种基金the Natural Science Foundation of Fujian Province,China(No.2022J02006)the Special Funds for Central Government Guiding Shenzhen Development in Science and Technology,China(No.2021Szvup066).
文摘Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap semiconductors(WBGSs)with three-dimensional(3-D)nanostructures are ideal candidates for increasing the ECE of BCs.This paper proposes hydrothermally grown ZnO nanorod arrays(ZNRAs)for ^(63)Ni-powered BCs.A quantitative model was established for simulation using the parameter values of the dark characteristics,which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure.Monte Carlo(MC)modeling and simulation were conducted to obtain the values of the β energy deposited in ZNRAs with different nanorod spacings and heights.Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures,the performance of the ^(63)Ni-powered BCs based on both structures was evaluated using a quantitative model.The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ECE of 10.1%and 4.69%,respectively,which indicates the significant superiority of 3-D nanostructured WBGSs in increasing the ECE of BCs.
基金the National Natural Science Foundation1 of China (No. 50528404)the National High-Tech Research and Development Program of China (No. 2006AA03Z224)
文摘Highly oriented ZnO nanorod arrays were successfully prepared on the indium tin oxide (ITO) substrate using a galvanostatic electrodeposition method. The ITO substrate was pretreated with ZnO nanoparticles via simple low-temperature solution route. The crystallinity, microstructure of surface, and optical properties of the obtained ZnO were characterized by X-ray diffraction, scanning electron microscope, and transmittance spectrum. The results indicate that the average diameter of ZnO nanorod arrays is about 30 nm, and the narrow size distribution ranges from 20 to 50 nm. The nanorod arrays are growing along wavelength of incident is over 380 nm, the ZnO nanorod arrays growth mechanism of the nanorod arrays was discussed. [001] direction with an orientation perpendicular to the substrate. When the show a high optical transmission of above 95%. Furthermore, the possible
基金financially supported by the National Key Research and Development Program of China(No.2018YFA0703500)the National Natural Science Foundation of China(Nos.52232006,52188101,52102153,52072029,51991340,and 51991342)+3 种基金the Overseas Expertise Introduction Projects for Discipline Innovation,China(No.B14003)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-18-001C1 and 06500160)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(Nos.FRF-IDRY-21-019 and FRFIDRY-21-014)the State Key Lab for Advanced Metals a nd Materials,China(No.2023-Z01)。
文摘Lithography is a pivotal micro/nanomanufacturing technique,facilitating performance enhancements in an extensive array of devices,encompassing sensors,transistors,and photovoltaic devices.The key to creating highly precise,multiscale-distributed patterned structures is the precise control of the lithography process.Herein,high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography.By optimizing these parameters,ZnO nanorod arrays with line/hole arrangements are successfully prepared.Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure,enlarged surface area,and improved light capture ability,which achieve highly efficient energy conversion in perovskite solar cells.The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.
基金the financial support of the project from the National Natural Science Foundation of China(Grant No.61574117)the Natural Science Foundation of Guangdong Province(Grant No.2018B030311002)the China Scholarship Council(Grant No.201806310044)。
文摘A full-duplex radiant energy converter based on both betavoltaic and photovoltaic effects in an easyto-implement way is an attractive alternative for the autonomous wireless sensor microsystem.Here,we report a novel beta/photovoltaic cell based on free-standing Zn O nanorod arrays(ZNRAs)modified with metallic single-walled carbon nanotubes(m-SWCNTs),using radioisotope63 Ni as beta-emitting source.The ZNRAs were grown on Al-doped Zn O(AZO)conductive glass using hydrothermal method.The optimum length and diameter of Zn O nanorods were determined by Monte Carlo simulation for beta energy deposition in ZNRAs.The m-SWCNTs were anchored into the ZNRAs to form a three-dimensional(3-D)Schottky junction structure for effectively separating the beta/photo-excited electron-hole pairs.Experimentally,the betavoltaic and photovoltaic effects were confirmed through the I-V measurements of beta/photovoltaic cells under beta/UV/Vis irradiations,respectively.It is suggested that the m-SWCNTs play key role for the enhancement of beta/photovoltaic performance through the formation of extensive3-D Schottky junction,the conductive network for hole transport,and the surface plasmon resonance exciton absorption for visible light.
基金financially supported by the National Natural Science Foundation of China (No.11104008)the Beijing Natural Science Foundation (No.4142040)the Fundamental Research Funds for Central Universities of China (No. 212-105560GK)
文摘Porous silicon pillar array(PSPA) samples which are ideal substantial materials with dominant electronic and luminescence properties were prepared by surface etching method. ZnO nanorods with or without Mn doping grown uniformly and aligned onto PSPA regardless of lattice matching show various photoluminescence(PL)properties. The doped Mn ions in ZnO nanorods were directly observed by X-ray photoelectron spectroscopy(XPS),and ZnO structures were detected by X-ray diffraction(XRD). As the doping concentration increases,XRD peaks of ZnO nanorods shift to low angle. The influences of doping Mn ions on luminescence properties of ZnO nanorods were investigated. Except for the ultraviolet(UV) PL band, the broad PL band is observed at visible region. The band could be divided into three separate bands(orange, green and red) by Lorentzian deconvolution. The intensity of orange PL band firstly increases then decreases, and then gets the maximum at the doping Mn-to-Zn molar ratio of 2.0:100.0 which is the most effective doping concentration. The green PL band is attributed to zinc vacancy of ZnO, the orange PL band to Mn ions recombination of itself, and the red PL band to oxygen vacancy of ZnO, respectively. As the Mn-doped ZnO nanorods could emit yellow green luminescence excited by UV radiation, and doped Mn ions could improve the color rendering index of the luminescence, the nanorods could be used as promising white-light emitters in the future.
基金supported by the National Natural Science Foundation of China(51362026)the Technological Innovation Youth Training Project of Xinjiang Uyghur Autonomous Region of China(QN2015YX004)+1 种基金Qun Jing would like to acknowledge the support from the Foundation for High-level Talents in Shihezi University(RCZX201511)the Applied Basic Research Foundation of Science and Technology in Shihezi University(2015ZRKXYQ07)
文摘Light capture and electron recombination are the essential processes that determine power conversion efficiency (PCE) in quantum dot sensitized solar cells (QD- SCs). It is well known that charges are easily transported in well-built QDSCs based on nauorod arrays. However, this advantage can be drastically weakened by defects located at the zinc oxide (ZnO) array surface which permit faster electron recombination. Hence, we developed a composite nanostructure consisting of ZnO nanorods coated with orthorhombic configuration titanium dioxide (TiO2) nanopartides, which were synthesized using a solution of H3BO3 and (NH4)2TiF6. This composite nanostructure was designed to take the advantage of the enlarged surface area provided by the nanoparticles and improved electron transport along the nanorods, in order to yield good charge transport and light harvesting. At the same time, the TiO2/ZnO nanorod arrays have fewer recombination centers (hydroxyl groups) after TiO2 modification, which results in fewer electron trapping events at the ZnO nanorod surface; thereby, a reduced charge recombination and longer electron lifetime can be achieved. As a result, the PCE of the QDSCs with TiO2-nanopartides-decorated ZnO nanorod arrays photoelectrode reaches 4.8%, which is ~78% higher efficiency compared to 2.7% for solar cells without modification.
基金supported by the National Key Research and Development Program of China(2013CB932602 and 2016YFA0202701)the Program of Introducing Talents of Discipline to Universities(B14003)+2 种基金the National Natural Science Foundation of China(51527802,51232001,51372020 and 51602020)Beijing Municipal Science&Technology Commission(Z151100003315021)China Postdoctoral Science Foundation(2016M600039)
文摘ZnO is a typical direct wide-bandgap semiconductor material, which has various morphologies and unique physical and chemical properties, and is widely used in the fields of energy, information technology, biomedicine, and others. The precise design and controllable fabrication of nanostructures have gradually become important avenues to further enhancing the performance of Zn O-based functional nanodevices. This paper introduces the continuous development of patterning technologies, provides a comprehensive review of the optical lithography and laser interference lithography techniques for the controllable fabrication of Zn O nanostructures, and elaborates on the potential applications of such patterned Zn O nanostructures in solar energy, water splitting, light emission devices, and nanogenerators. Patterned Zn O nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which realize the efficient carrier regulation,achieve highly efficient energy conversion, and meet the diverse requirements of functional nanodevices. The patterning techniques proposed for the precise design of Zn O nanostructures not only have important guiding significance for the controllable fabrication of complex nanostructures of other materials, but also open up a new route for the further development of functional nanostructures.
基金supported by the National Nature Science Foundation of China (51372075)
文摘An ultraviolet (UV)-visible tunable photodetec- tor based on ZnO nanorod arrays (NAs)/perovskite hetero- junction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method and an- nealed in different atmospheres. Based on solar cell structure perovskite photodetectors, it exhibited highly repeatable and stable photoelectric response characteristics. In addition, the devices with ZnO NAs annealed in a vacuum showed a high responsivity of about 1014 cm Hz1/2 W-1 in the visible region, whereas the devices with ZnO NAs annealed in air exhib- Red good detectivity in the UV region, especially at around 350 nm. Furthermore, when the annealing atmosphere of the ZnO nanorods was changed from vacuum to air, the domi- nant detection region of the photodetectors was altered from the visible to the ultraviolet region. These results enable po- tential applications of the ZnO NAs/perovskite photodetec- tors in ultraviolet and visible regions.