In the absence of commonly used seed layer, we can still successfully synthesized aligned ZnO nanowire arrays by the hydrothermal method. By using aluminum-doped zinc oxide(AZO) glass as a substrate, high-density and ...In the absence of commonly used seed layer, we can still successfully synthesized aligned ZnO nanowire arrays by the hydrothermal method. By using aluminum-doped zinc oxide(AZO) glass as a substrate, high-density and vertically aligned ZnO nanowires were synthesized directly on the substrate in the absence of the ZnO seed layer. The current-voltage curve indicated that the sample grown on AZO glass substrate in the absence of seed layer possesses better conductivity than that synthesized on FTO glass substrate with ZnO seed layer. Thus, a simplified, seed-free and low-cost experimental protocol was reported here for large-scale production of high quality ZnO nanowire arrays with promoted conductivity.展开更多
We have obtained vertically aligned ZnO nanowire arrays synthesized by microwave-assisted heating method with different growth time.From the room-temperature PL measurement,the strong deep-level emission and weak near...We have obtained vertically aligned ZnO nanowire arrays synthesized by microwave-assisted heating method with different growth time.From the room-temperature PL measurement,the strong deep-level emission and weak near band edge(NBE)emission can be seen.The deep-level emissions became weaker and deep-level emissions became stronger when the samples were annealed at 300℃for 30 min,meanwhile,the NBE emission peaks get red-shifted with growth time,and the longer the growth time,the more the peak shifting.This phenomenon can be attributed that the diameter of ZnO nanowires increases with growth time.This PL emission phenomenon is important in research of optoelectronic application.展开更多
In study on the growth reaction mechanism of Eu-doped ZnO nanowire(NW), the intermedium of reaction is characterized by measures such as FTIR. Besides, the influences of polyethyleneimine(PEI) on morphology, struc...In study on the growth reaction mechanism of Eu-doped ZnO nanowire(NW), the intermedium of reaction is characterized by measures such as FTIR. Besides, the influences of polyethyleneimine(PEI) on morphology, structure and photoelectric property of NW are observed by SEM, TEM, XRD, UV-vis and PL spectrum. According to the result, it manifests that Eu-doped ZnO NW array growth response experiences six mutually associated reaction processes in PEI-HMTA system:(a) chelation reaction of PEI and Zn^2+ & Eu^3+;(b) protonation reaction of PEI and NH_3;(c) decomposition reaction of hexamethylenetetramine(HMTA);(d) Mannich reaction of HCHO and PEI;(e) formation of precursor of Eu-doped ZnO;(f) dehydration condensation of Eu-doped ZnO precursors, further forming a doped ZnO NW array. Among them, PEI is the key factor of the whole doping growth reaction process. It both plays a role in modifying the growth of ZnO NW and makes it become longer and thinner. In the meantime, it also facilitates doping of Eu and enables ZnO NW to capture more photoelectrons and higher transmission rate, which is critical to improve photovoltaic performance of optoelectronic devices.展开更多
Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy(AFM)tip.The output of a nanogenerator is affected by three parameters:tip normal force,tip scanning...Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy(AFM)tip.The output of a nanogenerator is affected by three parameters:tip normal force,tip scanning speed,and tip abrasion.In this work,systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output,using statistical design of experiments.A statistical model has been built to analyze the data and predict the optimal parameter settings.For an AFM tip of cone angle 70°coated with Pt,and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1μm,the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40μm/s,rather than the conventional settings of 120 nN for the normal force and 30μm/s for the scanning speed.A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings.展开更多
ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (...ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.展开更多
基金Funded by the Natural Science Foundation of Jiangsu Province of China(Nos.BK20150829)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Nos.NY215023,NY217094,and Y214014)
文摘In the absence of commonly used seed layer, we can still successfully synthesized aligned ZnO nanowire arrays by the hydrothermal method. By using aluminum-doped zinc oxide(AZO) glass as a substrate, high-density and vertically aligned ZnO nanowires were synthesized directly on the substrate in the absence of the ZnO seed layer. The current-voltage curve indicated that the sample grown on AZO glass substrate in the absence of seed layer possesses better conductivity than that synthesized on FTO glass substrate with ZnO seed layer. Thus, a simplified, seed-free and low-cost experimental protocol was reported here for large-scale production of high quality ZnO nanowire arrays with promoted conductivity.
基金by the National Natural Science Foundation of China(Nos.61874058 and 51861145301)the Nanjing University of Posts and Telecommunications under Research Projects(Nos.NY220036 and NY217096)the Nanjing University of Posts and Telecommunications Foundation(Nos.JUH219002 and JUH219007)。
文摘We have obtained vertically aligned ZnO nanowire arrays synthesized by microwave-assisted heating method with different growth time.From the room-temperature PL measurement,the strong deep-level emission and weak near band edge(NBE)emission can be seen.The deep-level emissions became weaker and deep-level emissions became stronger when the samples were annealed at 300℃for 30 min,meanwhile,the NBE emission peaks get red-shifted with growth time,and the longer the growth time,the more the peak shifting.This phenomenon can be attributed that the diameter of ZnO nanowires increases with growth time.This PL emission phenomenon is important in research of optoelectronic application.
基金Financially supported by the National Natural Science Foundation of China(Nos:51463023 and 21461028)Guangxi Key Laboratory of Farm Products Processing(Cultivation Base)Guangxi Colleges and Universities Program of Innovative Research Team and Outstanding Talent
文摘In study on the growth reaction mechanism of Eu-doped ZnO nanowire(NW), the intermedium of reaction is characterized by measures such as FTIR. Besides, the influences of polyethyleneimine(PEI) on morphology, structure and photoelectric property of NW are observed by SEM, TEM, XRD, UV-vis and PL spectrum. According to the result, it manifests that Eu-doped ZnO NW array growth response experiences six mutually associated reaction processes in PEI-HMTA system:(a) chelation reaction of PEI and Zn^2+ & Eu^3+;(b) protonation reaction of PEI and NH_3;(c) decomposition reaction of hexamethylenetetramine(HMTA);(d) Mannich reaction of HCHO and PEI;(e) formation of precursor of Eu-doped ZnO;(f) dehydration condensation of Eu-doped ZnO precursors, further forming a doped ZnO NW array. Among them, PEI is the key factor of the whole doping growth reaction process. It both plays a role in modifying the growth of ZnO NW and makes it become longer and thinner. In the meantime, it also facilitates doping of Eu and enables ZnO NW to capture more photoelectrons and higher transmission rate, which is critical to improve photovoltaic performance of optoelectronic devices.
基金This research was supported by the Basic Energy Science,U.S.Department of Energy(BES DOE)(No.DE-FG02-07ER46394)the National Science Foundation(NSF)(Nos.DMS0706436,CMMI 0403671)。
文摘Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy(AFM)tip.The output of a nanogenerator is affected by three parameters:tip normal force,tip scanning speed,and tip abrasion.In this work,systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output,using statistical design of experiments.A statistical model has been built to analyze the data and predict the optimal parameter settings.For an AFM tip of cone angle 70°coated with Pt,and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1μm,the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40μm/s,rather than the conventional settings of 120 nN for the normal force and 30μm/s for the scanning speed.A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings.
基金This work was supported by the National Major Research Program of China (No. 2013CB932602), the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), National Natural Science Foundation of China (NSFC) (Nos. 51232001, 51172022, 51372020, and 51002008), the Fundamental Research Funds for Central Universities, Program for New Century Excellent Talents in Universities, and the Program for Changjiang Scholars and Innovative Research Teams in Universities.
文摘ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.