ZnO as a semiconductor photocatalyst is widely applied in the photodegradation of organic pollutants. Its photocatalytic activity is greatly decreased because of the recombination of photoexcited electrons and holes i...ZnO as a semiconductor photocatalyst is widely applied in the photodegradation of organic pollutants. Its photocatalytic activity is greatly decreased because of the recombination of photoexcited electrons and holes in the bulk. In this work, ZnO sheets are synthesized by adjusting the NaOH concentration under light irradiation at room temperature. Compared with ZnO particles, the ZnO sheets prepared with a light-assisted growth method exhibit a higher rate of photodegradation of methylene blue under UV visible light irradiation. The improved photodegradation rate is mainly attributed to the shortened transport distance of photoexcited electrons, the high surface area, and the surface atom structure modified by the light-assisted growth process. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The structural, electronic and magnetic properties of the hydroxylated graphitic Zinc oxide (ZnO) sheet were studied using the density functional theory. We found that the hydroxylation can induce a magnetic moment of...The structural, electronic and magnetic properties of the hydroxylated graphitic Zinc oxide (ZnO) sheet were studied using the density functional theory. We found that the hydroxylation can induce a magnetic moment of 1.0 μB per unit cell and turn graphitic ZnO sheet from semiconductor into half metal for the three studied hydroxylated configurations with a half-metal gap up to 0.60 eV. The relative stability of each situation was also discussed and the structure for hydroxyl absorbed above the hexagonal ring of ZnO sheet was the most steady. The prominent electronic and magnetic properties may endow 2D ZnO sheet great opportunity in future spintronics.展开更多
基金support from the Institute of Metal Research,Chinese Academy of Sciencessupported by the National Science Fund of China(51202105,21366020)+1 种基金the Natural Science Foundation of Jiangxi Province(20151BAB216006)the Science and Technology Project of Education Department of Jiangxi Province(GJJ14109)
文摘ZnO as a semiconductor photocatalyst is widely applied in the photodegradation of organic pollutants. Its photocatalytic activity is greatly decreased because of the recombination of photoexcited electrons and holes in the bulk. In this work, ZnO sheets are synthesized by adjusting the NaOH concentration under light irradiation at room temperature. Compared with ZnO particles, the ZnO sheets prepared with a light-assisted growth method exhibit a higher rate of photodegradation of methylene blue under UV visible light irradiation. The improved photodegradation rate is mainly attributed to the shortened transport distance of photoexcited electrons, the high surface area, and the surface atom structure modified by the light-assisted growth process. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Funded by the National Natural Science Foundation of China(Grant No. 10874052)Foundation for the Author of NationalExcellent Doctoral Dissertation of China (Grant No. 200726)
文摘The structural, electronic and magnetic properties of the hydroxylated graphitic Zinc oxide (ZnO) sheet were studied using the density functional theory. We found that the hydroxylation can induce a magnetic moment of 1.0 μB per unit cell and turn graphitic ZnO sheet from semiconductor into half metal for the three studied hydroxylated configurations with a half-metal gap up to 0.60 eV. The relative stability of each situation was also discussed and the structure for hydroxyl absorbed above the hexagonal ring of ZnO sheet was the most steady. The prominent electronic and magnetic properties may endow 2D ZnO sheet great opportunity in future spintronics.