The zinc oxide varistor with a low threshold voltage and large grain size was derived with ZnO crystalline seeds from a molten salt process The chemical composition and I-V characteristics of single grains and single ...The zinc oxide varistor with a low threshold voltage and large grain size was derived with ZnO crystalline seeds from a molten salt process The chemical composition and I-V characteristics of single grains and single grain boundaries were determined by means of energy dispersive spectrum (EDS) and microcontact measurement respectively. Temperatu re dependence of dielectric loss at various frequencies and voltage dependence of capacitance were carefully measured. Based on these experimental data. the barrier heights of giain boundaries are estimated to be 0.2. 0.5 and 0.6 eV respectively corresponding to thick, th in and direct contact grain boundaries. In addition. a computerized electrical circuit simufation is employed in simulating I-V characteristics of single grain boundary within ZnO varistor. By adjustjng parameters of resistor and diode, a general agreement between the measured data and simulated curves is achieved展开更多
A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance...A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance of ZnO nanowire FET(Nanowire Field-Effect Transistor) with a wrap-around gate configuration,were explored.With the increase of the grain boundary angle,the electrical performance degrades gradually.When a grain boundary with a smaller angle,such as 5° GB,is located close to the source or drain electrode,the grain boundary is partially depleted by an electric field peak,which leads to the decrease of electron concentration and the degradation of transistor characteristics.When the 90° GB is located at the center of the nanowire,the action of the electric field is balanced out,so the electrical performance of transistor is better than that of the 90° GB located at the other positions.展开更多
The degradation phenomena due to the energy pulse in the high-energy ZnO varistors used for deexitation and overvoltage protection of hydroelectric generator are investigated. The energy pulse, obtained by releasing t...The degradation phenomena due to the energy pulse in the high-energy ZnO varistors used for deexitation and overvoltage protection of hydroelectric generator are investigated. The energy pulse, obtained by releasing the energy stored in an inductor, can be equivalent to the combination of the DC field components and the energy component. The variations of the characterized voltages, nonlinear coefficients and pre-breakdown V-A characteristics, increase with the number of the applied energy pulse. The asymmetrical variations of the electric properties of the high-energy ZnO varistors after the energy pulse arise from the deformation of the double Schottky barriers due to the ion migration occuring in the depletion layer and in the grain boundary.展开更多
Studies on ZnO ceramic varistors by deep heat treatment at 650–900 C are reported. The current creep time curve exhibits a peak during the continuous action of a dc biasing voltage; the forwardV-l characteristic is i...Studies on ZnO ceramic varistors by deep heat treatment at 650–900 C are reported. The current creep time curve exhibits a peak during the continuous action of a dc biasing voltage; the forwardV-l characteristic is improved rather than degraded after the action of the biasing voltage. We assume that the zinc interstitial cations Zni are out diffused rapidly and the concentration of Zni in the depletion layer is decreased rapidly during deep heat treatment; the oxygen anions O’o could be accumulated at the grain interface if the out diffusion quantity of Zni is not enough to react with the O’o; the current creep phenomenon above results from the migration of the interface O’o by the biasing voltage. We suggest an improved grain boundary defect model for the ZnO varistors by deep heat treatment, and examine the model using the experimental data of lifetime positron-annihilation spectroscopy.展开更多
The effects of TiO2 on sintering and nonlinear electrical properties of(98.5-x)ZnO–0.5MnO2–0.5Co2O3-0.5Bi2O3–xTiO2(x = 0.3,0.5,0.7,0.9 mol%) ceramic varistors prepared by the ceramic technique are investigated ...The effects of TiO2 on sintering and nonlinear electrical properties of(98.5-x)ZnO–0.5MnO2–0.5Co2O3-0.5Bi2O3–xTiO2(x = 0.3,0.5,0.7,0.9 mol%) ceramic varistors prepared by the ceramic technique are investigated in this work.The optimum sintering temperature of the prepared samples is deduced by determining the firing shrinkage and water absorption percentages.The optimum sintering temperature is found to be 1200℃,at which each of the samples shows a maximum firing shrinkage and minimum water absorption.Also minimum water absorption appears in a sample of x = 0.9 mol%.Higher sintering temperature and longer sintering time give rise to a reduction in bulk density due to the increased amount of porosity between the large grains of ZnO resulting from the rapid grain growth induced by the liquid phase sintering.The crystal size of ZnO decreases with increasing TiO2 doping.The addition of TiO2 improves the nonlinear coefficient and attains its maximum value at x = 0.7 mol% of TiO2,further addition negatively affects it.A decrease in capacitance consequently in the dielectric constant is recorded with increasing the frequency in a range of 30 kHz–200 kHz.The temperature and composition dependences of the dielectric constant and AC conductivity are also studied.The increase of temperature raises the dielectric constant because it increases ionic response to the field at any particular frequency.展开更多
The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling ra...The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.展开更多
Double-layered, low-voltage ZnO varistors have been fabricated by feeding two kinds of ZnO powders into a die using dry extrusion molding. Compared with ZnO varistors fabricated by the conventional route, the layered ...Double-layered, low-voltage ZnO varistors have been fabricated by feeding two kinds of ZnO powders into a die using dry extrusion molding. Compared with ZnO varistors fabricated by the conventional route, the layered ZnO varistors have larger non-linear coefficients, lower breakdown electric fields, and lower leakage current densities. The improvement in electrical performance of the layered low-voltage ZnO varistors is attributed to the asymmetric band structure at grain boundary between the two layers.展开更多
For quantitative estimation of the degree of electrical disorder(electrical inhomogeneity)in ZnO varistor ceramics caused by a variation in the barrier height at different grain boundaries in a sample,the comparison o...For quantitative estimation of the degree of electrical disorder(electrical inhomogeneity)in ZnO varistor ceramics caused by a variation in the barrier height at different grain boundaries in a sample,the comparison of threshold electric fields(onsets of highly nonlinear current-voltage characteristics)in ceramics and single grain boundary(GB)is suggested and approved.At dc degradation similar behavior of the current-voltage characteristics of ZnO varistor ceramics and single GB is observed.The percolation model of Shklovskii-De Gennes is applicable for the description of a disorder in ZnO varistor ceramics.The degree of the disorder in ZnO varistor ceramics is not dependent on the duration of dc degradation at least at degradation time below 60 h.At voltages close to the onset of a highly nonlinear region of current-voltage characteristic the correlation radius of infinite cluster is~5 times greater than the average grain size.展开更多
This paper reviews the history of ZnO varistor,discribes its properties and recenttechnological status and forecasts its evolution.The future development trend is to produce the low-voltage high-energy multi-layer ZnO...This paper reviews the history of ZnO varistor,discribes its properties and recenttechnological status and forecasts its evolution.The future development trend is to produce the low-voltage high-energy multi-layer ZnO varistors.After the two additives are classified by their functions,the effect mechanism of Bi_2O_3 and TiO_2 additives are researched theoretically.TiO_2 will make ZnO graingrow bigger and V_ImA/mm be depressed down.Especially the colloid TiO_2 additive in the scale ofnanometer brings about a new method to realize the low voltage of ZnO varistor,which resolves theproblem of how to disturb nanometer powder evenly.Moreover the sintering temperature has prominenteffect on the electrical properties of ZnO varistors.Generally,the appropriate sintering temperature forlow-voltage ZnO varistor ceramics should not be more than 1 250℃.These provide an effective methodand rationale for studying low-voltage ZnO varistors.展开更多
In this paper discussions on ZnO based varistor ceramics doped with different ratios of Y2O3 are presented.Analysis on the phase and microstructures of the samples indicates that an additional phase is detected in the...In this paper discussions on ZnO based varistor ceramics doped with different ratios of Y2O3 are presented.Analysis on the phase and microstructures of the samples indicates that an additional phase is detected in the samples doped with Y2O3,and the average grain size of the specimens decreases from about 9.2μm to 4.5μm,with an increase in the addition of Y2O3 from 0 mol%to 3 mol%.The corresponding varistor’s voltage gradient markedly increases from 462 V/mm to 2340 V/mm,while the nonlinear coefficient decreases from 22.3 to 11.5,respectively.Furthermore,the characteristics of deep trap levels in these ZnO samples are investigated by measuring their dielectric spectroscopies.The trap energy level and capture cross section evaluated by relaxation peak of the Cole-Cole plot vary slightly as the addition of Y2O3 increases.These traps may be ascribed to the intrinsic defects of ZnO lattice.展开更多
The development of low-voltage ZnO varistor ceramics containing TiO2 is presented in this report. The varistor properties of ZnO ceramics with different compositions were measured, and microstructure of the ceramics w...The development of low-voltage ZnO varistor ceramics containing TiO2 is presented in this report. The varistor properties of ZnO ceramics with different compositions were measured, and microstructure of the ceramics was investigated by XRD and SEM. The results show that the addition of TiO2 is beneficial to the decrease of varistor voltage (V1mA). whereas it leads to the recession of nonlinear coefficient (α) and leakage current (lL). The varistor properties of ZnO ceramics containing TiO2 can be effectively improved by introducing moderate amount of pre-fabricated ZnO seed grains. The behaviors of TiO2 and seed grains, as well as the mechanisms by which TiO2 and seed grains influence varistor properties, are discussed.展开更多
文摘The zinc oxide varistor with a low threshold voltage and large grain size was derived with ZnO crystalline seeds from a molten salt process The chemical composition and I-V characteristics of single grains and single grain boundaries were determined by means of energy dispersive spectrum (EDS) and microcontact measurement respectively. Temperatu re dependence of dielectric loss at various frequencies and voltage dependence of capacitance were carefully measured. Based on these experimental data. the barrier heights of giain boundaries are estimated to be 0.2. 0.5 and 0.6 eV respectively corresponding to thick, th in and direct contact grain boundaries. In addition. a computerized electrical circuit simufation is employed in simulating I-V characteristics of single grain boundary within ZnO varistor. By adjustjng parameters of resistor and diode, a general agreement between the measured data and simulated curves is achieved
基金Project(60876022) supported by the National Natural Science Foundation of ChinaProject(50925727) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance of ZnO nanowire FET(Nanowire Field-Effect Transistor) with a wrap-around gate configuration,were explored.With the increase of the grain boundary angle,the electrical performance degrades gradually.When a grain boundary with a smaller angle,such as 5° GB,is located close to the source or drain electrode,the grain boundary is partially depleted by an electric field peak,which leads to the decrease of electron concentration and the degradation of transistor characteristics.When the 90° GB is located at the center of the nanowire,the action of the electric field is balanced out,so the electrical performance of transistor is better than that of the 90° GB located at the other positions.
文摘The degradation phenomena due to the energy pulse in the high-energy ZnO varistors used for deexitation and overvoltage protection of hydroelectric generator are investigated. The energy pulse, obtained by releasing the energy stored in an inductor, can be equivalent to the combination of the DC field components and the energy component. The variations of the characterized voltages, nonlinear coefficients and pre-breakdown V-A characteristics, increase with the number of the applied energy pulse. The asymmetrical variations of the electric properties of the high-energy ZnO varistors after the energy pulse arise from the deformation of the double Schottky barriers due to the ion migration occuring in the depletion layer and in the grain boundary.
文摘Studies on ZnO ceramic varistors by deep heat treatment at 650–900 C are reported. The current creep time curve exhibits a peak during the continuous action of a dc biasing voltage; the forwardV-l characteristic is improved rather than degraded after the action of the biasing voltage. We assume that the zinc interstitial cations Zni are out diffused rapidly and the concentration of Zni in the depletion layer is decreased rapidly during deep heat treatment; the oxygen anions O’o could be accumulated at the grain interface if the out diffusion quantity of Zni is not enough to react with the O’o; the current creep phenomenon above results from the migration of the interface O’o by the biasing voltage. We suggest an improved grain boundary defect model for the ZnO varistors by deep heat treatment, and examine the model using the experimental data of lifetime positron-annihilation spectroscopy.
文摘The effects of TiO2 on sintering and nonlinear electrical properties of(98.5-x)ZnO–0.5MnO2–0.5Co2O3-0.5Bi2O3–xTiO2(x = 0.3,0.5,0.7,0.9 mol%) ceramic varistors prepared by the ceramic technique are investigated in this work.The optimum sintering temperature of the prepared samples is deduced by determining the firing shrinkage and water absorption percentages.The optimum sintering temperature is found to be 1200℃,at which each of the samples shows a maximum firing shrinkage and minimum water absorption.Also minimum water absorption appears in a sample of x = 0.9 mol%.Higher sintering temperature and longer sintering time give rise to a reduction in bulk density due to the increased amount of porosity between the large grains of ZnO resulting from the rapid grain growth induced by the liquid phase sintering.The crystal size of ZnO decreases with increasing TiO2 doping.The addition of TiO2 improves the nonlinear coefficient and attains its maximum value at x = 0.7 mol% of TiO2,further addition negatively affects it.A decrease in capacitance consequently in the dielectric constant is recorded with increasing the frequency in a range of 30 kHz–200 kHz.The temperature and composition dependences of the dielectric constant and AC conductivity are also studied.The increase of temperature raises the dielectric constant because it increases ionic response to the field at any particular frequency.
基金This work is financially supported by the National Natural Science Foundation of China (No. 50471045)Shanghai Nano-technology Promotion Center (No. 0452nm026).
文摘The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.
基金supported by the Science and Technology Commission of Yunnan Province (No. 2002GG09)the Science Research Foundationof Kunming University of Science and Technology (No. 2007-15).
文摘Double-layered, low-voltage ZnO varistors have been fabricated by feeding two kinds of ZnO powders into a die using dry extrusion molding. Compared with ZnO varistors fabricated by the conventional route, the layered ZnO varistors have larger non-linear coefficients, lower breakdown electric fields, and lower leakage current densities. The improvement in electrical performance of the layered low-voltage ZnO varistors is attributed to the asymmetric band structure at grain boundary between the two layers.
文摘For quantitative estimation of the degree of electrical disorder(electrical inhomogeneity)in ZnO varistor ceramics caused by a variation in the barrier height at different grain boundaries in a sample,the comparison of threshold electric fields(onsets of highly nonlinear current-voltage characteristics)in ceramics and single grain boundary(GB)is suggested and approved.At dc degradation similar behavior of the current-voltage characteristics of ZnO varistor ceramics and single GB is observed.The percolation model of Shklovskii-De Gennes is applicable for the description of a disorder in ZnO varistor ceramics.The degree of the disorder in ZnO varistor ceramics is not dependent on the duration of dc degradation at least at degradation time below 60 h.At voltages close to the onset of a highly nonlinear region of current-voltage characteristic the correlation radius of infinite cluster is~5 times greater than the average grain size.
文摘This paper reviews the history of ZnO varistor,discribes its properties and recenttechnological status and forecasts its evolution.The future development trend is to produce the low-voltage high-energy multi-layer ZnO varistors.After the two additives are classified by their functions,the effect mechanism of Bi_2O_3 and TiO_2 additives are researched theoretically.TiO_2 will make ZnO graingrow bigger and V_ImA/mm be depressed down.Especially the colloid TiO_2 additive in the scale ofnanometer brings about a new method to realize the low voltage of ZnO varistor,which resolves theproblem of how to disturb nanometer powder evenly.Moreover the sintering temperature has prominenteffect on the electrical properties of ZnO varistors.Generally,the appropriate sintering temperature forlow-voltage ZnO varistor ceramics should not be more than 1 250℃.These provide an effective methodand rationale for studying low-voltage ZnO varistors.
基金Supported by the National Natural Science Foundation of China(Grant Nos.50425721 and 50737001)the 11th Five-year Natural S&T Supporting Plan of China(Grant No.2006 BAAO2A16)
文摘In this paper discussions on ZnO based varistor ceramics doped with different ratios of Y2O3 are presented.Analysis on the phase and microstructures of the samples indicates that an additional phase is detected in the samples doped with Y2O3,and the average grain size of the specimens decreases from about 9.2μm to 4.5μm,with an increase in the addition of Y2O3 from 0 mol%to 3 mol%.The corresponding varistor’s voltage gradient markedly increases from 462 V/mm to 2340 V/mm,while the nonlinear coefficient decreases from 22.3 to 11.5,respectively.Furthermore,the characteristics of deep trap levels in these ZnO samples are investigated by measuring their dielectric spectroscopies.The trap energy level and capture cross section evaluated by relaxation peak of the Cole-Cole plot vary slightly as the addition of Y2O3 increases.These traps may be ascribed to the intrinsic defects of ZnO lattice.
基金Funded by the science fund of Wuhan University of Technology.
文摘The development of low-voltage ZnO varistor ceramics containing TiO2 is presented in this report. The varistor properties of ZnO ceramics with different compositions were measured, and microstructure of the ceramics was investigated by XRD and SEM. The results show that the addition of TiO2 is beneficial to the decrease of varistor voltage (V1mA). whereas it leads to the recession of nonlinear coefficient (α) and leakage current (lL). The varistor properties of ZnO ceramics containing TiO2 can be effectively improved by introducing moderate amount of pre-fabricated ZnO seed grains. The behaviors of TiO2 and seed grains, as well as the mechanisms by which TiO2 and seed grains influence varistor properties, are discussed.