(Ag + Fe)-doped ZnO nanopowders have been synthesized using combustion method. Ag doping level was kept as 2 at.%, and Fe doping level was varied from 3 to 6 at,%, and the structural, optical, surface morphological...(Ag + Fe)-doped ZnO nanopowders have been synthesized using combustion method. Ag doping level was kept as 2 at.%, and Fe doping level was varied from 3 to 6 at,%, and the structural, optical, surface morphological, and antibacterial properties have been investigated. The structural studies show that ZnO/(Ag 4-Fe) nanopowders have hexagonal wurtzite structure with a preferential orientation along the (101) plane. The FE-SEM images indicate that there is a gradual decrease in the grain size with the increase in the doping level of Fe, and the TEM images are correlated well with FE-SEM images. The XPS profile clearly confirms the presence of expected elemental composition. Photolumi- nescence studies reveal the presence of extrinsic defects in the material. Antibacterial activity of Ag- and Fe-doped ZnO nanopowders against Vibrio parahaemolyticus, Vibrio Cholerae, and Staphylococcus aureus bacteria was also investigated.展开更多
基金the financial assistance from the director of collegiate education,Govt.of Tamil Nadu,Chennai
文摘(Ag + Fe)-doped ZnO nanopowders have been synthesized using combustion method. Ag doping level was kept as 2 at.%, and Fe doping level was varied from 3 to 6 at,%, and the structural, optical, surface morphological, and antibacterial properties have been investigated. The structural studies show that ZnO/(Ag 4-Fe) nanopowders have hexagonal wurtzite structure with a preferential orientation along the (101) plane. The FE-SEM images indicate that there is a gradual decrease in the grain size with the increase in the doping level of Fe, and the TEM images are correlated well with FE-SEM images. The XPS profile clearly confirms the presence of expected elemental composition. Photolumi- nescence studies reveal the presence of extrinsic defects in the material. Antibacterial activity of Ag- and Fe-doped ZnO nanopowders against Vibrio parahaemolyticus, Vibrio Cholerae, and Staphylococcus aureus bacteria was also investigated.