With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting gre...With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy crisis [1–3].展开更多
2,2'-Arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) 4l-s produced from reaction between dimedone with various aldehydes in acetonitrile using ZnO as a catalyst;whereas in the presence of ZnO-acetyl ...2,2'-Arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) 4l-s produced from reaction between dimedone with various aldehydes in acetonitrile using ZnO as a catalyst;whereas in the presence of ZnO-acetyl chloride catalysts the reaction is limited to give only 1,8-dioxo-octahydroxanthenes 3a-k in very good yields.展开更多
C-oriented ZnO epitaxial thin films are grown separately on the a-plane and c-plane sapphire substrates by using a molecular-beam epitaxy technique. In contrast to single crystalline ZnO films grown on a-plane sapphir...C-oriented ZnO epitaxial thin films are grown separately on the a-plane and c-plane sapphire substrates by using a molecular-beam epitaxy technique. In contrast to single crystalline ZnO films grown on a-plane sapphire, the films grown on c-plane sapphire are found to be bi-crystalline; some domains have a 30~ rotation to reduce the large mismatch between the film and the substrate. The presence of these rotation domains in the bi-crystalline ZnO thin film causes much more carrier scatterings at the boundaries, leading to much lower mobility and smaller mean free path of the mobile carriers than those of the single crystalline one. In addition, the complex impedance spectra are also studied to identify relaxation mechanisms due to the domains and/or domain boundaries in both the single crystalline and bi-crystalline ZnO thin films.展开更多
In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was in...In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was investigated in detail. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy results confirmed that 31 nm Cu20 and 30 nm Ag nanoparticles are well-dispersed on 202 nm ZnO grains to form a Cu2O/ZnO and Ag/ZnO heterojunction, respectively. The bi-heterojuction structure in the Cu20-Ag/ZnO provided a synergistic effect on antibacterial activity, and the(Cu2O)0.04Ag0.06ZnO0.9nanocomposites showed the highest antimicrobial activity of all samples with minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli and Staphylococcus aureus as low to 31.25 μg/mL, 250μg/mL, 125μg/mL and 500μg/mL, respectively. This is the first report of the antibacterial activities of Cu2O and Ag co-modified ZnO nanocomposites.展开更多
基金financially supported by the Liaoning Revitalization Talents Program (No. XLYC1807209)。
文摘With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy crisis [1–3].
基金support from the Research Council of University of Sistan and Baluchestan, Iran
文摘2,2'-Arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) 4l-s produced from reaction between dimedone with various aldehydes in acetonitrile using ZnO as a catalyst;whereas in the presence of ZnO-acetyl chloride catalysts the reaction is limited to give only 1,8-dioxo-octahydroxanthenes 3a-k in very good yields.
基金partially supported by the National Natural Science Foundation of China (Grant No. 10804017)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2007118)+3 种基金the Research Fund for the Doctoral Program of Higher Educa-tion of China (Grant No. 20070286037)the Cyanine-Project Foundation of Jiangsu Province of China (Grant No. 1107020060)the Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No. 1107020070)the New Century Excellent Talents in University (Grant No. NCET-05-0452)
文摘C-oriented ZnO epitaxial thin films are grown separately on the a-plane and c-plane sapphire substrates by using a molecular-beam epitaxy technique. In contrast to single crystalline ZnO films grown on a-plane sapphire, the films grown on c-plane sapphire are found to be bi-crystalline; some domains have a 30~ rotation to reduce the large mismatch between the film and the substrate. The presence of these rotation domains in the bi-crystalline ZnO thin film causes much more carrier scatterings at the boundaries, leading to much lower mobility and smaller mean free path of the mobile carriers than those of the single crystalline one. In addition, the complex impedance spectra are also studied to identify relaxation mechanisms due to the domains and/or domain boundaries in both the single crystalline and bi-crystalline ZnO thin films.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.51677120 and 51207093)the Shenzhen Government Fund(Grant Nos.JCYJ20160422102919963)the Shenzhen Key Laboratory of Special Functional Materials(Grant Nos.T201502)
文摘In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was investigated in detail. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy results confirmed that 31 nm Cu20 and 30 nm Ag nanoparticles are well-dispersed on 202 nm ZnO grains to form a Cu2O/ZnO and Ag/ZnO heterojunction, respectively. The bi-heterojuction structure in the Cu20-Ag/ZnO provided a synergistic effect on antibacterial activity, and the(Cu2O)0.04Ag0.06ZnO0.9nanocomposites showed the highest antimicrobial activity of all samples with minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli and Staphylococcus aureus as low to 31.25 μg/mL, 250μg/mL, 125μg/mL and 500μg/mL, respectively. This is the first report of the antibacterial activities of Cu2O and Ag co-modified ZnO nanocomposites.