In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd&...In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.展开更多
Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, muc...Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, much work has been diligently performed to improve the physical properties of ZnO. In this work, an aqueous suspension route was used to prepare BiOCl/ZnO composite powders, and sintering processes were applied to investigate the influence of sintering temperature on the phase evolutions, microstructures, and photoelectric characteristics of BiOCl/ZnO composite powders. The results indicated that the photoelectric properties mainly depend on the relevant content of BiOCl in the composite powders and the sintering temperature. The photoelectric measurements in K_2SO_4 solutions show that the photoelectric properties of the samples with the appropriate BiOCl content(0.3 mol% and 2.0 mol%) are better than those of ZnO and commercial TiO_2(P_(25)) powders, but the photoelectric measurements in NaOH solutions indicate that the photoelectric characteristics of the as-sintered samples are only better than those of P_(25).展开更多
New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling ...New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling tests, it is shown that the requirements of commercial use were met. It is proved that Ag ZnO composites could be used to substitute toxic Ag CdO on large load electrical contactors.展开更多
With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting gre...With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy crisis [1–3].展开更多
Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are...Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are confirmed as ~3.3 and~3.5 eV, respectively. Subsequently, a p-BiOCl/n-ZnO heterostructural photodetector is constructed after a facile mechanical bonding and post annealing process. At –5 V bias, the photocurrent of the device under 350 nm irradiation is ~800 times higher than that in dark, which indicates its strong UV light response characteristic. However, the on/off ratio of In–ZnO–In photodetector is ~20 and the Cu–BiOCl–Cu photodetector depicts very weak UV light response. The heterostructure device also shows a short decay time of 0.95 s, which is much shorter than those of the devices fabricated from pure ZnO thin film and BiOCl nanoflakes. The p-BiOCl/n-ZnO heterojunction photodetector provides a promising pathway to multifunctional UV photodetectors with fast response, high signal-to-noise ratio, and high selectivity.展开更多
This paper reports that the lead zirconate titanate (PZT) piezoelectric composites incorporating zinc oxide nanowhiskers (ZnOw) were prepared by the conventional solid state processing. The whisker-dispersed PZT c...This paper reports that the lead zirconate titanate (PZT) piezoelectric composites incorporating zinc oxide nanowhiskers (ZnOw) were prepared by the conventional solid state processing. The whisker-dispersed PZT composites (PZT/ZnOw) presented a significant enhancement in the mechanical properties such as Young's modulus, tensile strength and compressive strength. Especially, the compressive strength increased from 153 MPa for the PZT to 228 MPa for the PZT/ZnOw composites. The reinforcement mechanism in strength of the composites was discussed. The me- chanical quality factors of the PZT/ZnOw composites increased considerably, while the piezoelectric constants and electromechanical coupling coefficient decreased slightly. The composites with good electrical and excellent mechanical properties are promising for further applications.展开更多
In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SE...In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SEM,HRTEM,EDS mapping and XPS.Volatile organic compounds(VOCs)sensing measurements indicated a noticeable improvement of response and decrease of working temperature for Co3O4/ZnO sensor,in comparison with pure ZnO,i.e.,the response towards 100 ppm acetone was 63.7(at a low working temperature of 180℃),which was 26 times higher than pure ZnO(response of 2.3 at 240℃).Excellent VOCs response characteristics could be ascribed to increased surface oxygen vacancy concentration(revealed by defect characterizations),catalytic activity of Co3O4 and the special p-n heterojunction structure,and bacterial cellulose provides a facile template for designing diverse functional heterojunctions for VOCs detection and other applications.展开更多
The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of ...The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.展开更多
文摘In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.
基金supported by the Fundamental Research Funds for the Central Universities (No.A0920502051513-5)
文摘Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, much work has been diligently performed to improve the physical properties of ZnO. In this work, an aqueous suspension route was used to prepare BiOCl/ZnO composite powders, and sintering processes were applied to investigate the influence of sintering temperature on the phase evolutions, microstructures, and photoelectric characteristics of BiOCl/ZnO composite powders. The results indicated that the photoelectric properties mainly depend on the relevant content of BiOCl in the composite powders and the sintering temperature. The photoelectric measurements in K_2SO_4 solutions show that the photoelectric properties of the samples with the appropriate BiOCl content(0.3 mol% and 2.0 mol%) are better than those of ZnO and commercial TiO_2(P_(25)) powders, but the photoelectric measurements in NaOH solutions indicate that the photoelectric characteristics of the as-sintered samples are only better than those of P_(25).
文摘New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling tests, it is shown that the requirements of commercial use were met. It is proved that Ag ZnO composites could be used to substitute toxic Ag CdO on large load electrical contactors.
基金financially supported by the Liaoning Revitalization Talents Program (No. XLYC1807209)。
文摘With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy crisis [1–3].
基金supported by the National Natural Science Foundation of China (Grant No. 61705043, 51872050 and11811530065)the National Key Research and Development Program of China (Grant No. 2017YFA0204600)+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK20160568)National Postdoctoral Science Foundation of China (Grant No.2017M611411, 2018M640338, 2018T110344 and2019T120299)the Ministry of Education Joint Fund for Equipment Pre-Research (6141A02033241)。
文摘Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are confirmed as ~3.3 and~3.5 eV, respectively. Subsequently, a p-BiOCl/n-ZnO heterostructural photodetector is constructed after a facile mechanical bonding and post annealing process. At –5 V bias, the photocurrent of the device under 350 nm irradiation is ~800 times higher than that in dark, which indicates its strong UV light response characteristic. However, the on/off ratio of In–ZnO–In photodetector is ~20 and the Cu–BiOCl–Cu photodetector depicts very weak UV light response. The heterostructure device also shows a short decay time of 0.95 s, which is much shorter than those of the devices fabricated from pure ZnO thin film and BiOCl nanoflakes. The p-BiOCl/n-ZnO heterojunction photodetector provides a promising pathway to multifunctional UV photodetectors with fast response, high signal-to-noise ratio, and high selectivity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50572010, 50742007 and 10672020)the National Defense Foundation of China (Grant No 401050301)the Scientific Project of 863 of China (Grant No 2007AA03Z103)
文摘This paper reports that the lead zirconate titanate (PZT) piezoelectric composites incorporating zinc oxide nanowhiskers (ZnOw) were prepared by the conventional solid state processing. The whisker-dispersed PZT composites (PZT/ZnOw) presented a significant enhancement in the mechanical properties such as Young's modulus, tensile strength and compressive strength. Especially, the compressive strength increased from 153 MPa for the PZT to 228 MPa for the PZT/ZnOw composites. The reinforcement mechanism in strength of the composites was discussed. The me- chanical quality factors of the PZT/ZnOw composites increased considerably, while the piezoelectric constants and electromechanical coupling coefficient decreased slightly. The composites with good electrical and excellent mechanical properties are promising for further applications.
文摘In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SEM,HRTEM,EDS mapping and XPS.Volatile organic compounds(VOCs)sensing measurements indicated a noticeable improvement of response and decrease of working temperature for Co3O4/ZnO sensor,in comparison with pure ZnO,i.e.,the response towards 100 ppm acetone was 63.7(at a low working temperature of 180℃),which was 26 times higher than pure ZnO(response of 2.3 at 240℃).Excellent VOCs response characteristics could be ascribed to increased surface oxygen vacancy concentration(revealed by defect characterizations),catalytic activity of Co3O4 and the special p-n heterojunction structure,and bacterial cellulose provides a facile template for designing diverse functional heterojunctions for VOCs detection and other applications.
文摘The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.