PNIPAM@ZnO/C composite photocatalyst was prepared by cross-linking polymerization technology with N-isopropylacrylamide used as functional monomer, N,N'-methylenebis (acrylamide) used as cross- linking agent, ammon...PNIPAM@ZnO/C composite photocatalyst was prepared by cross-linking polymerization technology with N-isopropylacrylamide used as functional monomer, N,N'-methylenebis (acrylamide) used as cross- linking agent, ammonium persulfate used as initiator, and 3-(trimethoxysilyl) propyl methacrylate used as surface modification reagent. The morphology, structure, electrochemical and photocatalytic properties of as-prepared samples were characterized via the serial tests. The temperature-response performances of PNIPAM@ZnO/C were evaluated by the photocatalytic degradation of tetracycline (TC) under different temperatures. The results show that the synthesized composite photocatalysts possess the excellent and switchable photocatalytic activity. The photocatalytic degradation activity of PNIPAM@ZnO/C is suppressed above the lower critical solution temperature (LCST), and it is enhanced below the LCST.展开更多
基金financial support of the National Natural Science Foundation of China(Nos.21576125,21407064)the Natural Science Foundation of Jiangsu Province(No.BKBK20151349)+2 种基金China Postdoctoral Science Founsation(Nos.2017M611716 and 2017M611734)Six talent peaks project in Jiangsu Province(No.XCL-014)Zhenjiang Science&Technology Program(No.SH2016012)
文摘PNIPAM@ZnO/C composite photocatalyst was prepared by cross-linking polymerization technology with N-isopropylacrylamide used as functional monomer, N,N'-methylenebis (acrylamide) used as cross- linking agent, ammonium persulfate used as initiator, and 3-(trimethoxysilyl) propyl methacrylate used as surface modification reagent. The morphology, structure, electrochemical and photocatalytic properties of as-prepared samples were characterized via the serial tests. The temperature-response performances of PNIPAM@ZnO/C were evaluated by the photocatalytic degradation of tetracycline (TC) under different temperatures. The results show that the synthesized composite photocatalysts possess the excellent and switchable photocatalytic activity. The photocatalytic degradation activity of PNIPAM@ZnO/C is suppressed above the lower critical solution temperature (LCST), and it is enhanced below the LCST.