We report, for the first time, binary ZnO/MnW04 nanocomposites with p-n heterojunction fabricated by a simple ultrasonic-calcination route. The phase structure, morphology, and optical along with tex- tural properties...We report, for the first time, binary ZnO/MnW04 nanocomposites with p-n heterojunction fabricated by a simple ultrasonic-calcination route. The phase structure, morphology, and optical along with tex- tural properties were comprehensively characterized. The photocatalytic performance was studied via degradations of rhodamine B, methyl blue and methyl orange (RhB, MB, MO), and fuchsine pollutants under visible-light illumination. The ZnO/MnW04 nanocomposites exhibited better photocatalytic per-formance than their single components and the nanocomposite with 30 wt% MnW04 showed the highest activity. Photocatalytic performance of this nanocomposite is 22.5, 17.7, 26.8, and 23.9 times higher than that of the ZnO sample in degradations of RhB, MB, MO, and fuchsine dyes, respectively. The improved photocatalytic performance was ascribed to the formation ofp-n heterojunction between ZnO and MnW04 with high charge separation efficiency as well as strong visible-light absorption ability. The possible mechanism for the improved photocatalytic performance was proposed. This study revealed that the novel ZnO/MnW04 p-n heterojunction can act as a promising visible-light-active photocatalyst for environmental applications.展开更多
文摘We report, for the first time, binary ZnO/MnW04 nanocomposites with p-n heterojunction fabricated by a simple ultrasonic-calcination route. The phase structure, morphology, and optical along with tex- tural properties were comprehensively characterized. The photocatalytic performance was studied via degradations of rhodamine B, methyl blue and methyl orange (RhB, MB, MO), and fuchsine pollutants under visible-light illumination. The ZnO/MnW04 nanocomposites exhibited better photocatalytic per-formance than their single components and the nanocomposite with 30 wt% MnW04 showed the highest activity. Photocatalytic performance of this nanocomposite is 22.5, 17.7, 26.8, and 23.9 times higher than that of the ZnO sample in degradations of RhB, MB, MO, and fuchsine dyes, respectively. The improved photocatalytic performance was ascribed to the formation ofp-n heterojunction between ZnO and MnW04 with high charge separation efficiency as well as strong visible-light absorption ability. The possible mechanism for the improved photocatalytic performance was proposed. This study revealed that the novel ZnO/MnW04 p-n heterojunction can act as a promising visible-light-active photocatalyst for environmental applications.