A new composite separation membrane was developed by using organically modified montmorillonite(OMMT)as an additive.The effects of OMMT on the modification and properties of PVDF composite membranes were investigated....A new composite separation membrane was developed by using organically modified montmorillonite(OMMT)as an additive.The effects of OMMT on the modification and properties of PVDF composite membranes were investigated.It is found that different kinds and amounts of OMMT into the casting solution can obviously change the pure water flux,separation performance and hydrophilicity of composite membrane in varying degrees.When the TA/PDA-MMT was 0.5 wt%,the pure water flux of the membrane reached the maximum,which was 584.7 L/(m^(2)·h),about 6 times that of the original membrane.The OMMT/PVDF composite membrane had good hydrophilicity and stability in the treatment of oily wastewater.The development of novel OMMT/PVDF composite membrane will provide a new idea for solving the problem of oily wastewater treatment.展开更多
In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd&...In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.展开更多
Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlay...Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range.展开更多
TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocataly...TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.展开更多
Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of...Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.展开更多
A new composite antibacterial material ZnO/Cu^(2+)-Chitosan/Montmorillonite (ZCCM) was prepared with montmorillonite as carrier,Zn(Ac)_(2)·2H_(2)O,Cu(NO_(3))_(2)·3H_(2)O and chitosan as raw materials.ZCCM wa...A new composite antibacterial material ZnO/Cu^(2+)-Chitosan/Montmorillonite (ZCCM) was prepared with montmorillonite as carrier,Zn(Ac)_(2)·2H_(2)O,Cu(NO_(3))_(2)·3H_(2)O and chitosan as raw materials.ZCCM was characterized by X-ray diffraction,nitrogen physical adsorption,scanning electron microscopy and energy dispersion spectrometry.The antibacterial activity of ZCCM against Escherichia coli,Salmonella typhimurium,and Staphylococcus aureus was evaluated by minimal inhibitory concentration,minimum bactericidal concentration and the influence of growth curves.ZCCM displays excellent antibacterial activity which is higher than ZnO-Montmorillonite,Cu^(2+)-Montmorillonite and ZnO/Cu^(2+)-Montmorillonite.In addition,the antibacterial mechanism of ZCCM was investigated by analyzing bacterial morphology,integrity of cell membrane,lipid peroxidation and the effect of histidine on antibacterial activity of materials.It is found that cell morphologies of bacteria are damaged and bacterial cells are shrunken.With the increase of cell membrane permeability,the intracellular dissolved matters leak continuously.What’s more,the reactive oxygen species are generated and biomacromolecules are oxidized.展开更多
Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of P...Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of Pb^(2+) ions by ACOR montmorillonite. Characterization of adsorbents involved the use of X-ray diffraction, sodium saturation techniques, coulter laser analysis, scanning electron microscopy, and electron dispersive spectroscopy.Synthesis involved the trimetric process, activation of the ACOR montmorillonite and reacting of the same with zinc nitrate to produce a zinc oxide composite solid at 450 °C.The reaction mechanism indicated less than one proton coefficient, and higher mass transfer rates, when compared with bare montmorillonite. Intraparticle diffusion was higher than the value recorded for the bare montmorillonite. Reactions based on initial Pb^(2+) concentration indicated that coated montmorillonite gradually became saturated as the concentration was increased. Reactions based on solid concentration demonstrated a complex change in the capacity of adsorption over different Pb^(2+) concentrations(10–40 mg L^(-1)) and solid concentrations(2–10 g L^(-1)). The specific surface area reduction, particle size increase, mineral aggregation, and concentration gradient effect controlled the complex changes in adsorption.展开更多
New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling ...New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling tests, it is shown that the requirements of commercial use were met. It is proved that Ag ZnO composites could be used to substitute toxic Ag CdO on large load electrical contactors.展开更多
With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting gre...With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy crisis [1–3].展开更多
The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite sampl...The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite samples were got after calculated at 700℃ and 1100 ℃. The results show that: when the value of Ti/montmorillonite is 12.5 mmol/g, the c axis of hydrated-titanium-oxide/ montmorillonite composite sample began to disorder, moreover, the crystal size of anatase is just 13.4nm in the TiO2/montmorillonite composite sample calculated at 700 ℃, and after calculated at 1100 ℃, the crystal size of anatase is 55.8 nm, and the relative content of anatase reaches the highest (55.7%). Compared with pure TiO2 nano-particle sample, TiO2/montmorillonite composite sample has a higher phase transition temperature from anatase phase to rutile phase and smaller crystal size of TiO2. Montmorillonite structure layer has a significant blocking effect on TiO2 phase transformation and grain growth, and the blocking effect reaches saturation when the value of Ti/montmorillonite is 12.5 mmol/g.展开更多
The synthesis of polyacrylamide (PAM)-montmorillinote composite by direct melting intercalation of polymer powders is studied using XRD, IR and DSC. The results show that melt PAM can intercalate into montmorillonite...The synthesis of polyacrylamide (PAM)-montmorillinote composite by direct melting intercalation of polymer powders is studied using XRD, IR and DSC. The results show that melt PAM can intercalate into montmorillonite layer. The layered distance(d//0//0//1) of montmorillonite increases, and the melt absorption peak of PAM in layer has eliminated. (Author abstract) 8 Refs.展开更多
基金Funded by the National Natural Science Foundation of China(No.52278453)Key Science Project of Liaoning Provincial Science and Technology Department(No.2022JH1/10800016)Basic Scientific Research Project of Colleges and Universities of Liaoning Provincial Department of Education(No.JYTMS20231574)。
文摘A new composite separation membrane was developed by using organically modified montmorillonite(OMMT)as an additive.The effects of OMMT on the modification and properties of PVDF composite membranes were investigated.It is found that different kinds and amounts of OMMT into the casting solution can obviously change the pure water flux,separation performance and hydrophilicity of composite membrane in varying degrees.When the TA/PDA-MMT was 0.5 wt%,the pure water flux of the membrane reached the maximum,which was 584.7 L/(m^(2)·h),about 6 times that of the original membrane.The OMMT/PVDF composite membrane had good hydrophilicity and stability in the treatment of oily wastewater.The development of novel OMMT/PVDF composite membrane will provide a new idea for solving the problem of oily wastewater treatment.
文摘In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.
基金supported by the National Natural Science Foun-dation of China(51873103)Capacity Building Project of Some Local Colleges and Universities in Shanghai(17030501200)+2 种基金Scien-tific and Technological Support Projects in the Field of Biomedicine(19441901700)Talent Program of Shanghai University of Engi-neering Science(2017RC422017)First-rate Discipline Con-struction of Applied Chemistry(2018xk-B-06).
文摘Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range.
基金Project supported by the National Natural Science Foundation of China(No. 29977003, 20507011)the State Ministry of Education of China(No. 00028)
文摘TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.
文摘Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.
基金Funded by the Natural Science Foundation of Ningxia(No. 2019AAC03019)the National Natural Science Foundation of China(No. 51564043)。
文摘A new composite antibacterial material ZnO/Cu^(2+)-Chitosan/Montmorillonite (ZCCM) was prepared with montmorillonite as carrier,Zn(Ac)_(2)·2H_(2)O,Cu(NO_(3))_(2)·3H_(2)O and chitosan as raw materials.ZCCM was characterized by X-ray diffraction,nitrogen physical adsorption,scanning electron microscopy and energy dispersion spectrometry.The antibacterial activity of ZCCM against Escherichia coli,Salmonella typhimurium,and Staphylococcus aureus was evaluated by minimal inhibitory concentration,minimum bactericidal concentration and the influence of growth curves.ZCCM displays excellent antibacterial activity which is higher than ZnO-Montmorillonite,Cu^(2+)-Montmorillonite and ZnO/Cu^(2+)-Montmorillonite.In addition,the antibacterial mechanism of ZCCM was investigated by analyzing bacterial morphology,integrity of cell membrane,lipid peroxidation and the effect of histidine on antibacterial activity of materials.It is found that cell morphologies of bacteria are damaged and bacterial cells are shrunken.With the increase of cell membrane permeability,the intracellular dissolved matters leak continuously.What’s more,the reactive oxygen species are generated and biomacromolecules are oxidized.
基金the Niger Delta University for the usual research allowances provided for the running of research projects
文摘Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of Pb^(2+) ions by ACOR montmorillonite. Characterization of adsorbents involved the use of X-ray diffraction, sodium saturation techniques, coulter laser analysis, scanning electron microscopy, and electron dispersive spectroscopy.Synthesis involved the trimetric process, activation of the ACOR montmorillonite and reacting of the same with zinc nitrate to produce a zinc oxide composite solid at 450 °C.The reaction mechanism indicated less than one proton coefficient, and higher mass transfer rates, when compared with bare montmorillonite. Intraparticle diffusion was higher than the value recorded for the bare montmorillonite. Reactions based on initial Pb^(2+) concentration indicated that coated montmorillonite gradually became saturated as the concentration was increased. Reactions based on solid concentration demonstrated a complex change in the capacity of adsorption over different Pb^(2+) concentrations(10–40 mg L^(-1)) and solid concentrations(2–10 g L^(-1)). The specific surface area reduction, particle size increase, mineral aggregation, and concentration gradient effect controlled the complex changes in adsorption.
文摘New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling tests, it is shown that the requirements of commercial use were met. It is proved that Ag ZnO composites could be used to substitute toxic Ag CdO on large load electrical contactors.
基金financially supported by the Liaoning Revitalization Talents Program (No. XLYC1807209)。
文摘With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy crisis [1–3].
文摘The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite samples were got after calculated at 700℃ and 1100 ℃. The results show that: when the value of Ti/montmorillonite is 12.5 mmol/g, the c axis of hydrated-titanium-oxide/ montmorillonite composite sample began to disorder, moreover, the crystal size of anatase is just 13.4nm in the TiO2/montmorillonite composite sample calculated at 700 ℃, and after calculated at 1100 ℃, the crystal size of anatase is 55.8 nm, and the relative content of anatase reaches the highest (55.7%). Compared with pure TiO2 nano-particle sample, TiO2/montmorillonite composite sample has a higher phase transition temperature from anatase phase to rutile phase and smaller crystal size of TiO2. Montmorillonite structure layer has a significant blocking effect on TiO2 phase transformation and grain growth, and the blocking effect reaches saturation when the value of Ti/montmorillonite is 12.5 mmol/g.
文摘The synthesis of polyacrylamide (PAM)-montmorillinote composite by direct melting intercalation of polymer powders is studied using XRD, IR and DSC. The results show that melt PAM can intercalate into montmorillonite layer. The layered distance(d//0//0//1) of montmorillonite increases, and the melt absorption peak of PAM in layer has eliminated. (Author abstract) 8 Refs.