期刊文献+
共找到1,468篇文章
< 1 2 74 >
每页显示 20 50 100
Bacterial Cellulose Templated p-Co3O4/n-ZnO Nanocomposite with Excellent VOCs Response Performance 被引量:2
1
作者 Ling-li Qi Chun-yan Zhong +5 位作者 Zan-hong Deng Tian-tian Dai Jun-qing Chang Shi-mao Wang Xiao-dong Fang Gang Meng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第4期477-484,I0002,共9页
In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SE... In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SEM,HRTEM,EDS mapping and XPS.Volatile organic compounds(VOCs)sensing measurements indicated a noticeable improvement of response and decrease of working temperature for Co3O4/ZnO sensor,in comparison with pure ZnO,i.e.,the response towards 100 ppm acetone was 63.7(at a low working temperature of 180℃),which was 26 times higher than pure ZnO(response of 2.3 at 240℃).Excellent VOCs response characteristics could be ascribed to increased surface oxygen vacancy concentration(revealed by defect characterizations),catalytic activity of Co3O4 and the special p-n heterojunction structure,and bacterial cellulose provides a facile template for designing diverse functional heterojunctions for VOCs detection and other applications. 展开更多
关键词 Bacterial cellulose HETEROJUNCTION Metal oxide composite zno Gas sensor
下载PDF
Study of Structural, Optical, Electrical and Dielectric Properties of Gd-Doped ZnO Composites Synthesized by Solid State Reaction Method
2
作者 Santosh Kumar Kundara Kanhaiya Chawla +3 位作者 Dinesh Kumar Yadav Chhagan Lal Balram Tripathi Narendra Jakhar 《Open Journal of Composite Materials》 2024年第2期91-108,共18页
In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd&... In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications. 展开更多
关键词 zno:Gd composites Optical Band Gap Green Emission Dielectric Constant
下载PDF
Removing Cd^(2+) by Composite Adsorbent Nano-Fe_3O_4/Bacterial Cellulose 被引量:4
3
作者 LU Min GUAN Xiao-hui WEI De-zhou 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期1031-1034,共4页
A new composite adsorbent, nano-Fe3O4/bacterial cellulose(BC), was prepared through blending method. The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied. The results show that the... A new composite adsorbent, nano-Fe3O4/bacterial cellulose(BC), was prepared through blending method. The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied. The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles. Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%. The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type. The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied. Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent, which can make it be reused. 展开更多
关键词 NANO-FE3O4 Bacterial cellulose composite adsorbent Cadmium ion
下载PDF
First Otoliths/Collagen/Bacterial Cellulose Nanocomposites as a Potential Scaffold for Bone Tissue Regeneration 被引量:3
4
作者 G.M Olyveira Daisy Pereira Valido +3 位作者 L.M.M. Costa Plácia Barreto Prata Gois Lauro Xavier Filho Pierre Basmaji 《Journal of Biomaterials and Nanobiotechnology》 2011年第3期239-243,共5页
In the present work, we report the first bionanocomposite material formed by otoliths/ collagen/ bacterial cellulose (BC) networks (OCBC). This biomaterial is an osteoinductor or be, stimulates the bone regeneration, ... In the present work, we report the first bionanocomposite material formed by otoliths/ collagen/ bacterial cellulose (BC) networks (OCBC). This biomaterial is an osteoinductor or be, stimulates the bone regeneration, enabling bigger migration of the cells for formation of the bone tissue regeneration mainly because nanotolith are rich in minerals considered essential to the bone mineralization process on a protein matrix (otolin). The objective in this study was to analyze the regeneration capacity of bone defects treated with this bionanocomposite. Histological experiments shows bone tissue formation with high regularity, higher osteoblast activity and osteo-reabsorption activities areas. The results suggest the potential for this new biomaterial as a scaffold for bone tissue regeneration. 展开更多
关键词 BACTERIAL cellulose natural composites BIONANOcompositeS TISSUE engineering bone TISSUE regeneration
下载PDF
Bacterial Cellulose Composite Solid Polymer Electrolyte With High Tensile Strength and Lithium Dendrite Inhibition for Long Life Battery 被引量:2
5
作者 Yuhan Li Zongjie Sun +9 位作者 Dongyu Liu Shiyao Lu Fei Li Guoxin Gao Min Zhu Mingtao Li Yanfeng Zhang Huaitian Bu Zhiyu Jia Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期434-443,共10页
The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit li... The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit lithium dendrite growth.To prepare the high-performance solid polymer electrolyte,the environment-friendly and cheap bacterial cellulose(BC)is used as filler incorporating with PEO-based electrolyte owing to good mechanical properties and Li salts compatibility.PEO/Li TFSI/BC composite solid polymer electrolytes(CSPE)are prepared easily by aqueous mixing in water.The lithium ion transference number of PEO/Li TFSI/BC CSPE is 0.57,which is higher than PEO/Li TFSI solid polymer electrolyte(SPE)(0.409).The PEO/Li TFSI/BC CSPE exhibits larger tensile strength(4.43 MPa)than PEO/Li TFSI SPE(1.34 MPa).The electrochemical window of composite electrolyte is widened 1.43 V by adding BC.Density functional theory calculations indicate that flex of PEO chains around Li atoms is suppressed,suggesting the enhanced lithium ion conductivity.Frontier molecular orbitals results suggest that an unfavorable intermolecular charge transfer lead to achieve higher potential for BC composite electrolyte.All solid-state Li metal battery with PEO/Li TFSI/BC CSPE delivers longer cycle life for 600 cycles than PEO/Li TFSI SPE battery(50 cycles).Li symmetrical battery using PEO/Li TFSI/BC CSPE could be stable for 1160 h. 展开更多
关键词 all solid-state battery bacterial cellulose composite polymer electrolyte DFT calculations HOMO and LUMO
下载PDF
Biocomposite Films of Polylactic Acid Reinforced with Microcrystalline Cellulose from Pineapple Leaf Fibers 被引量:1
6
作者 Galia Moreno Karla Ramirez +1 位作者 Marianelly Esquivel Guillermo Jimenez 《Journal of Renewable Materials》 SCIE 2019年第1期9-20,共12页
Poly(lactic acid)(PLA)composite films reinforced with microcrystalline cellulose(MCC)extracted from pineapple leaf fibers(PALF)were prepared by a solution casting procedure.In an attempt to improve the interaction bet... Poly(lactic acid)(PLA)composite films reinforced with microcrystalline cellulose(MCC)extracted from pineapple leaf fibers(PALF)were prepared by a solution casting procedure.In an attempt to improve the interaction between PLA and cellulose,two approaches were adopted;first,poly(ethylene glycol)(PEG)was used as a surfactant,and second,the cellulosic fibers were pre-treated using tert-butanol(TBA).Lignocellulosic and cellulosic substrates were characterized using Fourier transform infrared(FTIR),wide-angle X-ray scattering(WAXS),and thermogravimetrical analysis(TGA).MCC from PALF showed good thermal stability,left few residues after decomposing,and exhibited high crystallinity index.Mechanical,thermal and thermomechanical properties of the PLA composites were also evaluated.Multiple PLA endotherms were observed in composites with TBA-treated MCC due to crystal nucleation effects.The ultimate tensile strain values for all composites were lower than that of the pristine PLA.However,4 wt.%MCC content provided balanced engineering properties in terms of static and dynamic tensile properties. 展开更多
关键词 cellulose composites MICROCRYSTALLINE PLA PINEAPPLE
下载PDF
Water-Based Processing of Fiberboard of Acrylic Resin Composites Reinforced With Cellulose Wood Pulp and Cellulose Nanofibrils 被引量:1
7
作者 Emanoele Maria Santos Chiromito Eliane Trovatti Antonio Jose Felix Carvalho 《Journal of Renewable Materials》 SCIE 2019年第5期403-413,共11页
Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic characte... Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character.Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils,and a resin of poly(styrene-methyl-methacrylate-acrylic acid)used as water-based emulsion.Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions.The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion and cellulose suspension,leading to the co-precipitation of the composite material,which can be easily separated from the water phase.Composites with acrylic polymer/cellulose fibers in the proportions of 75:25,50:50 and 25:75 wt%were prepared.Composites were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),dynamic mechanical analysis(DMA)and water absorption tests.SEM analysis revealed a very good dispersion of the fibers without evidence of agglomeration,which led to superior mechanical properties.These results showed the effectiveness of the methodology and the potential of cellulose wood pulp and CNF as reinforcement fillers in fiberboard composites and any other high fiber-content materials. 展开更多
关键词 cellulose wood pulp cellulose nanofibrils compositeS acrylic resin emulsion FIBERBOARD
下载PDF
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries 被引量:2
8
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
下载PDF
Preparation and Characterization of Cellulose Nanofibril-Waterborne Polyurethane Composite Films 被引量:5
9
作者 Xinqi Li Jinghuan Chen +1 位作者 Jingang Liu Qi Chen 《Paper And Biomaterials》 CAS 2023年第1期26-34,共9页
To improve the performance of polyurethane films,small amounts of cellulose nanofibrils(CNF)were physically blended with a waterborne polyurethane(WPU)emulsion,and then CNF/WPU composite films were prepared by cast-co... To improve the performance of polyurethane films,small amounts of cellulose nanofibrils(CNF)were physically blended with a waterborne polyurethane(WPU)emulsion,and then CNF/WPU composite films were prepared by cast-coating and drying.The particle size of the emulsions and the chemical structure,micromorphology,thermal stability,mechanical properties,and water resistance of the composite films were characterized using a Malvern laser particle size analyzer,Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),an electronic strength machine,water contact angle analysis(WCA),and water absorption tests,respectively.The results showed that at a low CNF content of 0.3 wt%,the particle size of the WPU emulsion and chemical structure of the film did not change significantly.In addition,the tensile strength of the composite film increased by up to 108%compared to the neat WPU film,and the thermal stability and water resistance were slightly improved.The addition of CNF greatly enhanced the tensile strength while maintaining the other original properties of the WPU film,which may greatly improve the service life and tear resistance of commercial coatings in the future. 展开更多
关键词 cellulose nanofibrils physical blending waterborne polyurethane composite film
下载PDF
Preparation and Properties of Nanocellulose/Sodium Alginate Composite Hydrogel 被引量:4
10
作者 Peiyi Li Ruiyan Liu +3 位作者 Haozhe Lei Miaomiao Zhou Boxing Jian Xinping Li 《Paper And Biomaterials》 CAS 2021年第4期38-46,共9页
Cellulose nanofiber(CNF)was isolated from Okara using deep eutectic solvent(DES)with high-speed stirring.The composite hydrogels obtained by using different proportions of CNF and sodium alginate(SA)had different prop... Cellulose nanofiber(CNF)was isolated from Okara using deep eutectic solvent(DES)with high-speed stirring.The composite hydrogels obtained by using different proportions of CNF and sodium alginate(SA)had different properties.The CNF/SA composite hydrogels were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy and tested for compression properties,rheological properties,water content,and swelling degree.Physical crosslinking between SA and Ca^(2+),and different degrees of hydrogen bond formation between SA and CNF were observed.The CNF/SA composite hydrogel have great potential as reinforcements in eco-friendly composite hydrogels for diverse applications. 展开更多
关键词 composite hydrogel cellulose nanofiber sodium alginate OKARA
下载PDF
Fully Bio-Based Composites of Poly(Lactic Acid)Reinforced with Cellulose-Graft-Poly-(ε-Caprolactone)Copolymers 被引量:1
11
作者 Chengtao Gao Yang Wu Haibo Xie 《Journal of Renewable Materials》 SCIE EI 2023年第3期1137-1152,共16页
Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization... Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization method to fabricate cellulose(MCC)-g-PCL(poly(ε-caprolactone))copolymers with a fully sustainable and biodegradable component.MCC-g-PCL copolymers were synthesized,characterized,and used as green plasticizers for the PLA toughening.The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility,crystallization,and toughening of the PLA/MCC-g-PCL composites.The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt%MCC-g-PCL,that is,the elongation at break was 22.6%(~376%higher than that of neat PLA),the tensile strength was 47.3 MPa(comparable to that of neat PLA),and the impact strength was 26 J/m(~130%higher than that of neat PLA).DSC results indicated that MCC-g-PCL reduced the Tg of the PLA blend.When the addition amount was 15 wt%,the Tg of the blend was 58.4°C.Compared with MCC,MCC-g-PCL polyester plasticizer has better thermal stability,T5%(°C)can still be maintained above 300°C.The rheological results showed that MCC-g-PCL acted as a plasticizer,the introduction of PCL flexible chain increased the mobility of PLA molecular chain,and decreased the complex viscosity,storage modulus and loss modulus of PLA blends.The MCC-g-PCL derivatives,as a new green plastic additive,have shown an interesting prospect to prepare fully bio-based composites. 展开更多
关键词 Green plasticizers PLA cellulose(MCC)-g-PCL fully bio-based composites
下载PDF
Preparation and Characterization of Co_(3)O_(4)/Graphene/Cellulose Nanofiber Composite Films 被引量:2
12
作者 Zejun Ding Tianying Chen +3 位作者 Yiming Zhou Peng Zhu Feiyun Li Yanjun Tang 《Paper And Biomaterials》 CAS 2022年第2期27-36,共10页
Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellul... Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellulose nanofiber(CNF)flexible composite films,in which the CNF acted as a spacer for the graphene,were prepared via a facile and scalable vacuum filtration method.The effects of the CNF on the microstructure,hydrophilicity,thermal stability,tensile strength,surface resistance,and electrochemical performance of the Co_(3)O_(4)/graphene/CNF composite films were systematically investigated.The results showed that the synergistic interaction of the CNF and graphene substantially improved the overall properties of the Co_(3)O_(4)/graphene/CNF composite films,particularly their hydrophilicity and tensile strength.Meanwhile,Co_(3)O_(4)/graphene/CNF composite films with a CNF content of 4%appeared to have the optimal electrochemical performance,with an area specific capacitance of 56 mF/cm^(2) and prominent capacitance retention of 95.6%at a current density of 1 A/g after 1000 cycles.This work demonstrated that the prepared Co_(3)O_(4)/graphene/CNF flexible composite films have great application potential in the field of flexible energy storage devices. 展开更多
关键词 cellulose nanofiber GRAPHENE Co_(3)O_(4) supercapacitor composite films
下载PDF
A Mini-review for the Application of Bacterial Cellulose-based Composites 被引量:1
13
作者 Weiyin Su Zhixin Wang +5 位作者 Zeyu Chang Yawen Feng Xi Yao Meng Wang Kun Wang Jianxin Jiang 《Paper And Biomaterials》 CAS 2023年第1期1-11,共11页
Countries are duly focusing more on biomass resources because of the increasing oil crisis.Owing to their excellent properties,such as natural characteristics,good mechanical performance,and outstanding chemical prope... Countries are duly focusing more on biomass resources because of the increasing oil crisis.Owing to their excellent properties,such as natural characteristics,good mechanical performance,and outstanding chemical properties,cellulose-based materials are highly valued as promising bioderived nanomaterials,especially bacterial cellulose(BC).The main advantage lies in eliminating the problem of removing lignin and hemicellulose from woody cellulose.Moreover,the use of BC reduces the consumption of wood,the excessive use of which aggravates global warming.Herein,we summarize the applications of BC composites in filter,medical,and conductive materials,and other fields.This review contributes to further expand the applications of this renewable polymer. 展开更多
关键词 bacterial cellulose functional composites APPLICATION sustainable materials
下载PDF
Preparation and Characterization of Sulfated Cellulose Nanocrystalline and its Composite Membrane for Removal of Tetracycline Hydrochloride in Water 被引量:1
14
作者 Jie Liu Duo Liu +4 位作者 Shisheng Liu Zhihong Li Xiaohui Wei Song Lin Minjie Guo 《Energy & Environmental Materials》 2020年第2期209-215,共7页
The removal of antibiotic pollutants remaining in the environmental media has been a big challenge nowadays.Herein,we report a facile and green approach to fabricate an eco-friendly composite membrane without addition... The removal of antibiotic pollutants remaining in the environmental media has been a big challenge nowadays.Herein,we report a facile and green approach to fabricate an eco-friendly composite membrane without addition of any toxic polymers or chemical cross-linking agents to effectively remove the tetracycline hydrochloride in Water.Firstly,the sulfated cellulose nanocrystalline(CNC) was obtained via hydrolysis of sulfuric acid by using microcrystalline cellulose(MCC) as raw material under ultrasonic condition.The as-prepared CNC has a nanowhisker dimension with 200.2 ± 110.2 nm in length,15.7 ± 9.3 nm in width,and 7.2 ± 3.1 nm in height.The obtained CNC is cellulose type I as determined by X-ray diffraction(XRD),while its crystallinity index(Crl) can reach 82.3%.Then,the composite membrane derived from the obtained CNC and commercial mixed cellulose ester(MCE)membrane was facilely prepared through vacuum dewatering process,which is applied to remove tetracycline hydrochloride(Th) in solution.The results showed that the removal efficiency of Th through the neat MCE was only28 ± 4%,while it could be improved to 58 ± 5% and 89 11%,respectively,by filtering through composite membranes with different contents of CNC deposition.Such effect is derived from the combine factors based on both steric hindrance(sieving) and electrostatic interaction(Donnan) effect of the composite membranes.The development of related CNC materials and composite fabrication processes is in favor of cost-effective and "green"polymer composites for the remediation of increasing antibiotic pollution and the purification of contaminated water nowadays. 展开更多
关键词 adsorption removal cellulose nanocrystalline composite membrane tetracycline hydrochloride
下载PDF
Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation, Characterization and Adsorption Behavior
15
作者 Meng Ling zhi, Du Chuan qing, Chen Yuan yin, He Yong bing, Jiang Juan, Wan Shu hui College of Chemistry & Molecular Science, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第3期733-736,共4页
Porous spherical cellulose composite (PSCA) coated by aluminum(Ⅲ) oxide was prepared and modified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it has spherical shape and ab... Porous spherical cellulose composite (PSCA) coated by aluminum(Ⅲ) oxide was prepared and modified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it has spherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon of the composite (PSCAS) present aluminum(Ⅲ) oxide and silicone are uniformly dispersed on the surface. The adsorption behavior of PSCAS toward metal ions was determined. 展开更多
关键词 cellulose composites spherical cellulose aluminum oxide silicome adsorption
下载PDF
Cellulose-based Antimicrobial Composites and Applications: A Brief Review 被引量:5
16
作者 Bo Sun Fangong Kong +4 位作者 Min Zhang Weijun Wang Birat Singh KC Jimi Tjong Mohini Sain 《Paper And Biomaterials》 2019年第4期1-14,共14页
Cellulose-based antimicrobial composites,typically in the form of functional films and cloth,have received much attention in various applications,such as food,medical and textile industries.Cellulose is a natural poly... Cellulose-based antimicrobial composites,typically in the form of functional films and cloth,have received much attention in various applications,such as food,medical and textile industries.Cellulose is a natural polymer,and is highly biodegradable,green,and sustainable.Imparting antimicrobial properties to cellulose,will significantly enhance its applications so that its commercial value can be boosted.In this review paper,the use of cellulose for antimicrobial composites’preparation was discussed.Two different approaches:surface loading/coating and interior embedding,were focused.Three most widely-applied sectors:food,medical and textile industries,were highlighted.Nanocellulose,as a leading-edge cellulose material,its unique application on the antimicrobial composites,was particularly discussed. 展开更多
关键词 antimicrobial cellulose-based composites NANOcellulose
下载PDF
Structural Study of Cellulose-Iron Oxide Composite Materials
17
作者 Dexu Kong Lee D. Wilson 《Journal of Materials Science and Chemical Engineering》 2018年第4期65-77,共13页
There are limited structural studies of iron oxide coated cellulose materials despite their use as adsorbents for the removal of waterborne arsenic species. This study reports on the structural characterization of cel... There are limited structural studies of iron oxide coated cellulose materials despite their use as adsorbents for the removal of waterborne arsenic species. This study reports on the structural characterization of cellulose-iron oxide composites at variable iron oxide content using spectroscopy methods (Raman, solids 13C NMR, powder X-ray diffraction (pXRD)) and thermal gravi-metric analysis (TGA). Iron oxide was supported onto cellulose (ca. 25 wt.%) without significant loss in the Fe coating efficiency, where the accessibility of the biopolymer -OH groups affect the coating efficiency and yield of the iron oxide-cellulose composite. Isotherm adsorption studies for cellulose, iron oxide species and the cellulose composite materials with roxarsone (3-nitro- 4-hydroxyphenylarsonic acid) were studied to characterize the surface chemical properties of these potential adsorbent materials. 展开更多
关键词 Characterization IRON OXIDE cellulose composite ROXARSONE ADSORPTION
下载PDF
Effects of cellulose nanocrystals on the acid resistance of cementitious composites
18
作者 Lin-ping Wu Guang-ping Huang +1 位作者 Chao-shi Hu Wei Victor Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1745-1758,共14页
Acid mine drainage presents an important threat to cementitious structures.This study is aimed at investigating the effect of cellulose nanocrystals(CNCs)on the acid resistance of cementitious composites.CNCs were add... Acid mine drainage presents an important threat to cementitious structures.This study is aimed at investigating the effect of cellulose nanocrystals(CNCs)on the acid resistance of cementitious composites.CNCs were added to mortar mixtures as additives at cement volume ratios of 0.2vol%,0.4vol%,1.0vol%,and 1.5vol%.After 28 d of standard curing,the samples were immersed in a sulfuric acid with a pH value of 2 for 75 d.The unconfined compressive strength(UCS)test,the density,water absorption,void volume test,and thermogravimetric analysis were carried out to investigate the properties of CNC mixtures before sulfuric acid immersion.It was found that the addition of CNC reduced the volume of permeable voids and increased the hydration degree and mechanical strength of the samples.Changes in mass and length were monitored during immersion to evaluate the acid resistance of mixtures.The mixture with 0.4vol%CNC showed a reduced mass change and length change indicating its improved acid resistance. 展开更多
关键词 acid resistance acid mine drainage cementitious composites cellulose nanocrystals
下载PDF
Interfacial Modification of Corn Stalk Cellulose Reinforced Used Rubber Powder Composites Treated with Coupling Agent
19
作者 Weili Wu Fengyu Chen 《Journal of Renewable Materials》 SCIE EI 2020年第8期905-913,共9页
Corn stalk cellulose(CS)/used rubber powder(RP)composites were prepared by mixing,the silane coupling agent 3-Mercaptopropyl trimethoxysilane(KH590),r-Aminopropyltrieth oxysilane(KH550),isopropyl dioleic(dioctylphosph... Corn stalk cellulose(CS)/used rubber powder(RP)composites were prepared by mixing,the silane coupling agent 3-Mercaptopropyl trimethoxysilane(KH590),r-Aminopropyltrieth oxysilane(KH550),isopropyl dioleic(dioctylphosphate)titanate(HY101)and bis-(γ-triethoxysilylpropyl)-tetrasulfide(Si69)were used to modify the interface of composites.The effects of the CS and coupling agents on the mechanical properties,thermal properties,interfacial morphology and structure of the composites were investigated,respectively.The results showed that the addition of CS could effectively improve the mechanical properties of the composites.Compared with the untreated composites,the interfacial bonding between CS and RP was significantly improved by the coupling modification treatment,and the tensile strength and elongation at break of composites with Si69 increased by 3.13 MPa and 10%,respectively,the Si69 showed the best coupling modification effect,followed by KH590,then KH550 and HY101 when the CS content was 25 pph(part per hundred)and coupling agent 1.5 pph,and the thermal decomposition temperature increased by 30℃. 展开更多
关键词 Corn stalk cellulose used rubber powder compositeS MODIFICATION
下载PDF
Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films
20
作者 Ruyu Yan Jian Fang +7 位作者 Xiaohua Yang Na Yao Mei Li Yuan Nie Tianxiang Deng Haiyang Ding Lina Xu Shouhai Li 《Journal of Renewable Materials》 SCIE EI 2023年第4期1937-1950,共14页
Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i... Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields. 展开更多
关键词 Ethyl cellulose dimeric fatty acid based thioether polyol supramolecular system composite films
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部