A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidat...A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidation(MAO) coating as transition layer can effectively enhance the bonding force of the superhydrophobic coating. The semiconductor@metal organic frameworks(MOFs) core-shell structure was synthesized by a simple self-templating method, and obtained ZnO@2-methylimidazole zinc salt(ZIF-8) nanorods array on magnesium(Mg)alloy. ZnO nanorods not only act as the template but also provide Zn^(2+) for ZIF-8. In addition, we proved that the ligand concentration,synthesis time and temperature are the keys to the preparation of ZnO@ZIF-8 nanorods. As we expect, the ZnO@ZIF-8 nanorods array can trap air in the gaps to form an air layer, and the coating exhibits superhydrophobic properties(154.81°). Excitingly, ZnO@ZIF-8 nanorods array shown a superhydrophobic property, without the requirement of fluorination or silane treatment. The results shown that the coating has good chemical stability and self-cleaning performance. Meanwhile, the corrosion resistance has been significantly improved, R_(ct) was increased from 1.044×10^(3) to 1.414×10^(6) Ω/cm^(2) and I_(corr) was reduced from 4.275×10^(-5) to 5.611×10^(-9)A/cm^2. Therefore, the semiconductor@MOFs core-shell structure has broad application prospects in anti-corrosion.展开更多
近年来由于环境问题CO_2加氢制甲醇催化反应重新回归为研究热点。对于Pd/ZnO催化剂,研究表明PdZn合金相是制甲醇反应的活性中心,而单独Pd利于CO生成。为了实现Pd和ZnO的充分接触,本工作以一种ZnO@ZIF-8核壳型结构为载体负载Pd纳米颗粒...近年来由于环境问题CO_2加氢制甲醇催化反应重新回归为研究热点。对于Pd/ZnO催化剂,研究表明PdZn合金相是制甲醇反应的活性中心,而单独Pd利于CO生成。为了实现Pd和ZnO的充分接触,本工作以一种ZnO@ZIF-8核壳型结构为载体负载Pd纳米颗粒后经由高温煅烧制得PZZ8-T催化剂(T为不同煅烧温度),同时制备了ZnO纳米棒负载Pd的PZ催化剂作为对比。在随后的CO_2加氢反应中,相比于PZ,PZZ8-T展现出极高的甲醇选择性。之后我们通过一系列表征探究了催化剂的构效关系,发现催化剂的甲醇选择性与表面Pd的化学态有关,更多的Pd以PdZn合金的形式存在将会带来更高的甲醇选择性。XPS O 1s谱图和EPR分析表明CO_2的活化与催化剂表面的氧空穴和ZnO极性面含量直接相关。而化学吸附手段进一步对Pd-ZnO界面进行了表征,揭示了其与CO_2转化速率的关联。本工作的意义在于,一是展现了利用新材料制备更优的传统催化剂的方法,二是通过表面分析手段加深了对催化剂构效关系的理解。展开更多
基金financially supported by Guangxi Natural Science Foundation of China (No.2020GXNSFAA159011)National Natural Science Foundation of China (No.51664011)。
文摘A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidation(MAO) coating as transition layer can effectively enhance the bonding force of the superhydrophobic coating. The semiconductor@metal organic frameworks(MOFs) core-shell structure was synthesized by a simple self-templating method, and obtained ZnO@2-methylimidazole zinc salt(ZIF-8) nanorods array on magnesium(Mg)alloy. ZnO nanorods not only act as the template but also provide Zn^(2+) for ZIF-8. In addition, we proved that the ligand concentration,synthesis time and temperature are the keys to the preparation of ZnO@ZIF-8 nanorods. As we expect, the ZnO@ZIF-8 nanorods array can trap air in the gaps to form an air layer, and the coating exhibits superhydrophobic properties(154.81°). Excitingly, ZnO@ZIF-8 nanorods array shown a superhydrophobic property, without the requirement of fluorination or silane treatment. The results shown that the coating has good chemical stability and self-cleaning performance. Meanwhile, the corrosion resistance has been significantly improved, R_(ct) was increased from 1.044×10^(3) to 1.414×10^(6) Ω/cm^(2) and I_(corr) was reduced from 4.275×10^(-5) to 5.611×10^(-9)A/cm^2. Therefore, the semiconductor@MOFs core-shell structure has broad application prospects in anti-corrosion.
基金supported by the National Science Foundation of China(21373153)~~
文摘近年来由于环境问题CO_2加氢制甲醇催化反应重新回归为研究热点。对于Pd/ZnO催化剂,研究表明PdZn合金相是制甲醇反应的活性中心,而单独Pd利于CO生成。为了实现Pd和ZnO的充分接触,本工作以一种ZnO@ZIF-8核壳型结构为载体负载Pd纳米颗粒后经由高温煅烧制得PZZ8-T催化剂(T为不同煅烧温度),同时制备了ZnO纳米棒负载Pd的PZ催化剂作为对比。在随后的CO_2加氢反应中,相比于PZ,PZZ8-T展现出极高的甲醇选择性。之后我们通过一系列表征探究了催化剂的构效关系,发现催化剂的甲醇选择性与表面Pd的化学态有关,更多的Pd以PdZn合金的形式存在将会带来更高的甲醇选择性。XPS O 1s谱图和EPR分析表明CO_2的活化与催化剂表面的氧空穴和ZnO极性面含量直接相关。而化学吸附手段进一步对Pd-ZnO界面进行了表征,揭示了其与CO_2转化速率的关联。本工作的意义在于,一是展现了利用新材料制备更优的传统催化剂的方法,二是通过表面分析手段加深了对催化剂构效关系的理解。