The structural characteristics and optical and electrical properties of molecular-beam-epitaxy (MBE) grown ZnS0.8Se0.2 thin films on indium-tin-oxide (ITO) glass substrates were investigated in this work. The X-ray di...The structural characteristics and optical and electrical properties of molecular-beam-epitaxy (MBE) grown ZnS0.8Se0.2 thin films on indium-tin-oxide (ITO) glass substrates were investigated in this work. The X-ray diffraction (XRD) results indicated that high quality polycrystalline ZnS0.8Se0.2 thin film grown at the optimized temperature had a preferred orientation along the (111) planes. The transmission electron microscopy (TEM) cross-sectional micrograph of the sample showed a well defined columnar structure with lateral crystal dimension in the order of a few hundred angstroms. Ultraviolet(UV) photoresponsivity as high as 0.01 A/W had been demonstrated and for wavelengths longer than 450 nm, the response was down from the peak response by more than 3 orders of magnitude. The thin ZnS0.8Se0,2 photosensor layer, with a wide energy gap and anisotropic electrical property, makes a transmission UV liquid crystal light valve (LCLV) with high resolution feasible.展开更多
采用脉冲激光沉积法在SiO2衬底上制备了CuGa0.8Ge0.2Se2薄膜。采用X射线衍射和X射线能谱仪研究了退火温度对薄膜晶体结构和成分的影响,利用扫描电子显微镜表征了薄膜的表面形貌,采用紫外—可见分光光度计分析了薄膜的光学特性。结果表明...采用脉冲激光沉积法在SiO2衬底上制备了CuGa0.8Ge0.2Se2薄膜。采用X射线衍射和X射线能谱仪研究了退火温度对薄膜晶体结构和成分的影响,利用扫描电子显微镜表征了薄膜的表面形貌,采用紫外—可见分光光度计分析了薄膜的光学特性。结果表明,在CuGaSe2中掺杂Ⅳ族元素Ge,光子吸收能量分别为0.65和0.92 e V,禁带宽度为1.57 e V,能够形成中间带。并随着退火温度的升高,CuGa0.8Ge0.2Se2薄膜的光学带隙逐渐减小。展开更多
基金Project supported by the National Natural Science Foundation of China (No. 59910161981) and RGC grant from the Hong Kong Government Grant (No. NSFC/HKUST 35) China
文摘The structural characteristics and optical and electrical properties of molecular-beam-epitaxy (MBE) grown ZnS0.8Se0.2 thin films on indium-tin-oxide (ITO) glass substrates were investigated in this work. The X-ray diffraction (XRD) results indicated that high quality polycrystalline ZnS0.8Se0.2 thin film grown at the optimized temperature had a preferred orientation along the (111) planes. The transmission electron microscopy (TEM) cross-sectional micrograph of the sample showed a well defined columnar structure with lateral crystal dimension in the order of a few hundred angstroms. Ultraviolet(UV) photoresponsivity as high as 0.01 A/W had been demonstrated and for wavelengths longer than 450 nm, the response was down from the peak response by more than 3 orders of magnitude. The thin ZnS0.8Se0,2 photosensor layer, with a wide energy gap and anisotropic electrical property, makes a transmission UV liquid crystal light valve (LCLV) with high resolution feasible.
文摘采用脉冲激光沉积法在SiO2衬底上制备了CuGa0.8Ge0.2Se2薄膜。采用X射线衍射和X射线能谱仪研究了退火温度对薄膜晶体结构和成分的影响,利用扫描电子显微镜表征了薄膜的表面形貌,采用紫外—可见分光光度计分析了薄膜的光学特性。结果表明,在CuGaSe2中掺杂Ⅳ族元素Ge,光子吸收能量分别为0.65和0.92 e V,禁带宽度为1.57 e V,能够形成中间带。并随着退火温度的升高,CuGa0.8Ge0.2Se2薄膜的光学带隙逐渐减小。