In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and ...In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction.展开更多
In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 eq...In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.展开更多
We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inho...We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.展开更多
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
基金the National Natural Science Foundation of China (21376282,21676035,21878029)Chongqing Science and Technology Commission (cstc2018jcyjAX0668)+2 种基金Shandong Province Natural Science Foundation (ZR2020QB18)China Postdoctoral Science Foundation (22012 T50762&2011 M501388)Graduate Student Research Innovation Project,Chongqing University (CYB18046)。
文摘In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction.
文摘In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.
文摘We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.