ZnTixFe2-xO4 and ZnTi0.6Fe1.4O4/Carbon nanotubes (ZT0.6F1.4/CNTs) composites were prepared by chemical co-precipitation method. The composition, microstructure, magnetic property, adsorption and photocatalytic activ...ZnTixFe2-xO4 and ZnTi0.6Fe1.4O4/Carbon nanotubes (ZT0.6F1.4/CNTs) composites were prepared by chemical co-precipitation method. The composition, microstructure, magnetic property, adsorption and photocatalytic activity of the prepared samples were characterized by means of modem analytical techniques. The results indicated that ZT0.6F1.4CNTs composites not only held the original special structure and excellent adsorption properties of CNTs, but also had suitable magnetic property and excellent photocatalytic activity. The removal rate of the samples on Rhodamine B (RhB) depended on the adsorption of CNTs and the photocatalytic degradation of ZTo.6F1.4 in the composites. The maximum adsorption amount (qm) of ZT0.6F1.4/CNTs with the mass ratios of ZT0.6F1.4 to CNTs (mz/c)=l was up to 17.153 mg g-t for RhB, its adsorption behavior was in accord with Langmuir model, and its photocatalytic degradation activity on RhB had a positive correlation with the content of ZT0.6F1.4 in the sample. The experimental results indicate that the total removal rate of composite with rnz/c=l on RhB was more than 95% and the composite had good decontamination capability on industrial dye wastewater. In addition, the samples can be recovered conveniently, activated easily and had good performance for recycling.展开更多
基金the National Nature Science Foundation of China (21071125) for financial support
文摘ZnTixFe2-xO4 and ZnTi0.6Fe1.4O4/Carbon nanotubes (ZT0.6F1.4/CNTs) composites were prepared by chemical co-precipitation method. The composition, microstructure, magnetic property, adsorption and photocatalytic activity of the prepared samples were characterized by means of modem analytical techniques. The results indicated that ZT0.6F1.4CNTs composites not only held the original special structure and excellent adsorption properties of CNTs, but also had suitable magnetic property and excellent photocatalytic activity. The removal rate of the samples on Rhodamine B (RhB) depended on the adsorption of CNTs and the photocatalytic degradation of ZTo.6F1.4 in the composites. The maximum adsorption amount (qm) of ZT0.6F1.4/CNTs with the mass ratios of ZT0.6F1.4 to CNTs (mz/c)=l was up to 17.153 mg g-t for RhB, its adsorption behavior was in accord with Langmuir model, and its photocatalytic degradation activity on RhB had a positive correlation with the content of ZT0.6F1.4 in the sample. The experimental results indicate that the total removal rate of composite with rnz/c=l on RhB was more than 95% and the composite had good decontamination capability on industrial dye wastewater. In addition, the samples can be recovered conveniently, activated easily and had good performance for recycling.