The phase formation and thermoelectric(TE)properties in the central region of the Zn−Sb phase diagram were analyzed through synthesizing a series of Zn_(1+x)Sb(x=0,0.05,0.1,0.15,0.25,0.3)materials by reacting Zn and S...The phase formation and thermoelectric(TE)properties in the central region of the Zn−Sb phase diagram were analyzed through synthesizing a series of Zn_(1+x)Sb(x=0,0.05,0.1,0.15,0.25,0.3)materials by reacting Zn and Sb powders below the solidus line of the Zn−Sb binary phase diagram followed by furnace cooling.In this process,the nonstoichiometric powder blend crystallized in a combination of ZnSb andβ-Zn4Sb3 phases.Then,the materials were ground and hot pressed to form dense ZnSb/β-Zn4Sb3 composites.No traces of Sb and Zn elements or other phases were revealed by X-ray diffraction,high resolution transmission electron microscopy and electron energy loss spectroscopy analyses.The thermoelectric properties of all materials could be rationalized as a combination of the thermoelectric behavior of ZnSb andβ-Zn4Sb3 phases,which were dominated by the main phase in each sample.Zn1.3Sb composite exhibited the best thermoelectric performance.It was also found that Ge doping substantially increased the Seebeck coefficient of Zn1.3Sb and led to significantly higher power factor,up to 1.51 mW·m−1·K−2 at 540 K.Overall,an exceptional and stable TE figure of merit(ZT)of 1.17 at 650 K was obtained for Zn1.28Ge0.02Sb.展开更多
Cd_(1-x)Zn_(x)S thin films were deposited by chemical bath deposition(CBD)on the glass substrate to study the influence of cadmium sulfate concentration on the structural characteristics of the thin film.The SEM resul...Cd_(1-x)Zn_(x)S thin films were deposited by chemical bath deposition(CBD)on the glass substrate to study the influence of cadmium sulfate concentration on the structural characteristics of the thin film.The SEM results show that the thin film surfaces under the cadmium sulfate concentration of 0.005 M exhibit better compactness and uniformity.The distribution diagrams of thin film elements illustrate the film growth rate changes on the trend of the increase,decrease,and increase with the increase of cadmium sulfate concentration.XRD studies exhibit the crystal structure of the film is the hexagonal phase,and there are obvious diffraction peaks and better crystallinity when the concentration is 0.005 M.Spectrophotometer test results demonstrate that the relationship between zinc content x and optical band gap value E_(g) can be expressed by the equation E_(g)(x)=0.59x^(2)+0.69x+2.43.Increasing the zinc content can increase the optical band gap,and the absorbance of the thin film can be improved by decreasing the cadmium sulfate concentration,however,all of them have good transmittance.At a concentration of 0.005 M,the thin film has good absorbance in the 300-800 nm range,80%transmittance,and band gap value of 3.24 eV,which is suitable for use as a buffer layer for solar cells.展开更多
The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a ...The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine.展开更多
文摘The phase formation and thermoelectric(TE)properties in the central region of the Zn−Sb phase diagram were analyzed through synthesizing a series of Zn_(1+x)Sb(x=0,0.05,0.1,0.15,0.25,0.3)materials by reacting Zn and Sb powders below the solidus line of the Zn−Sb binary phase diagram followed by furnace cooling.In this process,the nonstoichiometric powder blend crystallized in a combination of ZnSb andβ-Zn4Sb3 phases.Then,the materials were ground and hot pressed to form dense ZnSb/β-Zn4Sb3 composites.No traces of Sb and Zn elements or other phases were revealed by X-ray diffraction,high resolution transmission electron microscopy and electron energy loss spectroscopy analyses.The thermoelectric properties of all materials could be rationalized as a combination of the thermoelectric behavior of ZnSb andβ-Zn4Sb3 phases,which were dominated by the main phase in each sample.Zn1.3Sb composite exhibited the best thermoelectric performance.It was also found that Ge doping substantially increased the Seebeck coefficient of Zn1.3Sb and led to significantly higher power factor,up to 1.51 mW·m−1·K−2 at 540 K.Overall,an exceptional and stable TE figure of merit(ZT)of 1.17 at 650 K was obtained for Zn1.28Ge0.02Sb.
基金This work was supported by the Tianjin Municipal Education Commission,Horizontal subject(grant number 70304901).
文摘Cd_(1-x)Zn_(x)S thin films were deposited by chemical bath deposition(CBD)on the glass substrate to study the influence of cadmium sulfate concentration on the structural characteristics of the thin film.The SEM results show that the thin film surfaces under the cadmium sulfate concentration of 0.005 M exhibit better compactness and uniformity.The distribution diagrams of thin film elements illustrate the film growth rate changes on the trend of the increase,decrease,and increase with the increase of cadmium sulfate concentration.XRD studies exhibit the crystal structure of the film is the hexagonal phase,and there are obvious diffraction peaks and better crystallinity when the concentration is 0.005 M.Spectrophotometer test results demonstrate that the relationship between zinc content x and optical band gap value E_(g) can be expressed by the equation E_(g)(x)=0.59x^(2)+0.69x+2.43.Increasing the zinc content can increase the optical band gap,and the absorbance of the thin film can be improved by decreasing the cadmium sulfate concentration,however,all of them have good transmittance.At a concentration of 0.005 M,the thin film has good absorbance in the 300-800 nm range,80%transmittance,and band gap value of 3.24 eV,which is suitable for use as a buffer layer for solar cells.
基金supported by the National Natural Science Foundation of China(No.32071713)the Outstanding Youth Foundation Project of Heilongjiang Province of China(JQ2019C001)。
文摘The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine.