Cu_(2)ZnSnS_(4)薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能,受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu_(2)(Cd x Zn_(1-x))SnS_(4)(CCZTS)薄膜,研究退火时间和后退火温度对薄膜及其太阳电池性能的影...Cu_(2)ZnSnS_(4)薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能,受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu_(2)(Cd x Zn_(1-x))SnS_(4)(CCZTS)薄膜,研究退火时间和后退火温度对薄膜及其太阳电池性能的影响。研究结果表明,所制备的薄膜为CCZTS相,无其他杂相,薄膜表面平整且致密,结晶性较好。随着退火时间增加,薄膜的晶粒尺寸有所增大,薄膜太阳电池的pn结质量得到提升,其性能也随之提高。通过对薄膜太阳电池进行后退火处理,分析了吸收层的元素扩散对电池性能的影响,在Cd元素形成梯度分布时,电池性能有所提高。随着后退火温度的增加,其电池性能和pn结质量呈现先提高后下降的趋势。经后退火300℃处理后,电池转换效率最佳,为3.13%。展开更多
Co-precipitation is an important issue in chemical analysis, where it is often undesirable, but in some cases, it can be exploited. The Zn0.5Mn0.5−xLi2xFe2O4 nanomaterials (x = 0.0, 0.1, 0.2, 0.3 and 0.4) wa...Co-precipitation is an important issue in chemical analysis, where it is often undesirable, but in some cases, it can be exploited. The Zn0.5Mn0.5−xLi2xFe2O4 nanomaterials (x = 0.0, 0.1, 0.2, 0.3 and 0.4) was afforded by utilizing co-precipitation method. The structural and optical characteristics were analyzed for the samples employing X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometer (UV-Vis). XRD revealed that the structure of certain nanoparticles is a cubic spinel with space group (Fd-3m) and crystallite size in the scale 124 - 150 nm. Lattice parameter was determined to increments with Li+1 and that may occur due to the larger ionic radius of the Li1+ ion. FTIR spectroscopy confirmed the form of spinel ferrite and explicated the properties of absorption bands approximately 593, 1111, 1385, 1640, 2922 and 3430. The energy band gap was estimated for all samples with diverse ratios and was observed in the range of 2.58 - 2.52 eV.展开更多
文摘Cu_(2)ZnSnS_(4)薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能,受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu_(2)(Cd x Zn_(1-x))SnS_(4)(CCZTS)薄膜,研究退火时间和后退火温度对薄膜及其太阳电池性能的影响。研究结果表明,所制备的薄膜为CCZTS相,无其他杂相,薄膜表面平整且致密,结晶性较好。随着退火时间增加,薄膜的晶粒尺寸有所增大,薄膜太阳电池的pn结质量得到提升,其性能也随之提高。通过对薄膜太阳电池进行后退火处理,分析了吸收层的元素扩散对电池性能的影响,在Cd元素形成梯度分布时,电池性能有所提高。随着后退火温度的增加,其电池性能和pn结质量呈现先提高后下降的趋势。经后退火300℃处理后,电池转换效率最佳,为3.13%。
文摘Co-precipitation is an important issue in chemical analysis, where it is often undesirable, but in some cases, it can be exploited. The Zn0.5Mn0.5−xLi2xFe2O4 nanomaterials (x = 0.0, 0.1, 0.2, 0.3 and 0.4) was afforded by utilizing co-precipitation method. The structural and optical characteristics were analyzed for the samples employing X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometer (UV-Vis). XRD revealed that the structure of certain nanoparticles is a cubic spinel with space group (Fd-3m) and crystallite size in the scale 124 - 150 nm. Lattice parameter was determined to increments with Li+1 and that may occur due to the larger ionic radius of the Li1+ ion. FTIR spectroscopy confirmed the form of spinel ferrite and explicated the properties of absorption bands approximately 593, 1111, 1385, 1640, 2922 and 3430. The energy band gap was estimated for all samples with diverse ratios and was observed in the range of 2.58 - 2.52 eV.