The high Zoige Basin (Ruoergai Plateau) on the eastern Tibetan Plateau is a fault depression formed during intensive uplifting of the Tibetan Plateau. The wetland is globally important in biodiversity and is compose...The high Zoige Basin (Ruoergai Plateau) on the eastern Tibetan Plateau is a fault depression formed during intensive uplifting of the Tibetan Plateau. The wetland is globally important in biodiversity and is composed of marshes, bogs, fens, wet meadows and shallow water interspersed with low hills and sub-alpine meadows. Most of the Zoige wetlands have long been one of the most important grazing lands in China. Recent rangeland policy has allowed grazing, and usable wetland areas have been being legally allocated to individuals or groups of households on a long-term lease basis. Privatizafion of the wetland has impacted the Zoige wetlands in aspects of hydrologic condition, landscape and biodiversity. The uneven spatial distribution of water resources onprivatelands has led to the practice of extracting ground water, which has decreased the perched water table in Zoige. Fencing off the rangelands and grazing on expanding sand dunes have affected landscapes. Variation in the water table has led to the changes in vegetation diversity, resulting in the changes in wildlife and aquatic diversities and ecosystem processes. Making use all year round of the pasture that was previously grazed only in summer has shrunk the daily activity space of wildlife, and the newly erected fences blocked the movement of wild animals looking for food in the snow to lower and open areas. To maintain the favorable conditions of the Zoige wetland ecosystem, the author suggests that, in addition to biophysical research and implementation of conservation practices, there is an immediate need to initiate an integrated management program, increase public awareness of wetland functions and provide better training for the local conservation staff.展开更多
The Zoige wetland is the biggest alpine wetland in the world,and an important water resource of the Yellow River.Due to natural and human factors,the Zoige wetland has been seriously degraded.Existing studies on the Z...The Zoige wetland is the biggest alpine wetland in the world,and an important water resource of the Yellow River.Due to natural and human factors,the Zoige wetland has been seriously degraded.Existing studies on the Zoige wetland mainly focus on the macro features of the wetland,while the influence of the surrounding faults on the Zoige wetland degradation is rarely studied.This study uses terrain data to analyze the cover change and the water loss caused by the Wqie-Seji fault based on the distributed hydrological model.The simulated water loss demonstrates that the Normalized Difference Vegetation Index(NDVI) is the most important factor for inducing water loss.The fault is also a factor that cannot be neglected,which has caused 33% of the wetland water loss.Therefore,it is of importance to study the influence of the fault on the wetland degradation.展开更多
The Zoige Wetland is located in the northeastern Qinghai-Tibetan Plateau, which is highly sensitive to global environment change and human disturbance because of its high elevation and cold environment, thus, it's a ...The Zoige Wetland is located in the northeastern Qinghai-Tibetan Plateau, which is highly sensitive to global environment change and human disturbance because of its high elevation and cold environment, thus, it's a hotspot for land use and land cover change (LUCC) research. We used Landsat MSS images from 1975, Landsat ETM images from 2000, and Landsat TM images fi:om 1990 and 2005 to assess the LUCC in the study area, using GIS techniques, as well as topographic, vegetation, and soil maps combined with field investigations. The monitoring result shows that the study area's environment degraded rapidly between 1975 and 2005, including wetland shrinkage from 5,308 km2 to 4,980 lan2, sandy land expansion from 112 krn2 to 137 krn2, forest land decreasing from 5,686 km2 to 5,443 km2, and grassland degradation from 12,309 km2 to 10,672 km2. According to the analysis of meteorological data and social-economic statistical data, we concluded that the LUCC in the Zoige Wetland was caused by both natural and anthropogenic factors, but human activities were primarily responsible for the observed LUCC, thereby, we suggest human behaviors must be adjusted to control environmental degradation.展开更多
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dyna...Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.展开更多
Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site f...Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoig6 Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index (NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index (NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 kin2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.展开更多
For oviparous species, oviposition site selection influences adult reproductive success as well as the fitness of the resulting offspring. Females usually choose potential egg-laying sites depending on abundance and q...For oviparous species, oviposition site selection influences adult reproductive success as well as the fitness of the resulting offspring. Females usually choose potential egg-laying sites depending on abundance and quality to maximize their reproductive success. We focused on the oviposition site selection of this plateau frog in Zoige wetland and investigated how the egg-laying pattern of the females influences their offspring's survival. We found that shallow waters, decentralized spawning patterns, and egg attachment to appropriate distance to the water surface were the main spawning strategies of Nanorana pleskei endemic to Qinghai-Tibet Plateau. We argued that drought caused by increasing temperature and variable precipitation has probably influenced N. pleskei reproductive success, which may be a crucial reason for its population decline. Our findings have important significance for habitat preservation, increasing embryo survival and establishing practical conservation policies.展开更多
The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of w...The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of wetland degradation on the structure and relative abundance of nitrogencycling(nitrogen-fixing,ammonia-oxidizing,and denitrifying) microbial communities in 3 soil types(intact wetland:marsh soil;early degrading wetland:marsh meadow soil;and degraded wetland:meadow soil) using 454-pyrosequencing.The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types.Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogenfixing and denitrifying microbial bacteria differed at the class,order,family,and genus levels among the 3soil types.At the genus level,the majority of nitrogenfixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils;whereas those related to Geobacter originated from meadow soil.The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh(except for the 40-60 cm layer),marsh meadow and meadow soils;whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil.The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils;whereas those related to Herbaspirillum originated from meadow soil.The distribution of operational taxonomic units(OTUs)and species were correlated with soil type based upon Venn and Principal Coordinates Analysis(PCoA).Changes in soil type,caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing,ammonia-oxidizing,and denitrifying microbial communities.展开更多
Peatlands,as a special type of wetland,occupy only 3%of the Earth’s surface,but bear about one-third of the world’s soil carbon storage and play an important role in the global carbon cycle.The Zoige Wetland is loca...Peatlands,as a special type of wetland,occupy only 3%of the Earth’s surface,but bear about one-third of the world’s soil carbon storage and play an important role in the global carbon cycle.The Zoige Wetland is located on the eastern edge of the Qinghai-Tibet Plateau,and its peat reserves are up to 1.9 billion tons,accounting for more than 40%of the country’s peat resources,which is an important support for China to achieve the“double carbon”goal.This paper reviews the research status and storage estimation of soil organic carbon in Zoige Wetland.The statistical results show that there is a large difference in the estimation of carbon storage in the peatland of Zoige(0.43-1.42 Pg).The reasons are mainly related to marked differences in values reported for soil densities,organic carbon levels,and accumulation rates.There are still great uncertainties in the estimation of wetland carbon stocks,and future studies should focus on reducing soil carbon sink uncertainties,climate change,the impact of permafrost melting on carbon sink functions,the impact of degraded ecosystem restoration and sink enhancement pathways,and other greenhouse gas functions.In order to accurately reveal the current situation and future trend of carbon sink in peat wetlands,a model-multi-source observation data fusion system was constructed to complement the observation shortcomings in key areas,and provide reference and support for the construction of carbon neutral ecological civilization.展开更多
Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However,there are few quantitative studies in conjunction with proper qualitative evaluation con...Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However,there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study,spectral information from two Landsat-5 TM scenes(04.08.1994 and 28.07.2009,respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently,the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km^2 degraded meadow. Concerning other land-covers,shallow wetland increases ~107 km^2 and aeolian sediments(mobile dunes and sand sheets) have an increase of ~30 km^2. Considering the deterioration,an obvious decrease of ~440 km^2 degraded wetland can be observed. Likewise,decrease of deep wetland(~78 km^2),humid meadow(~80 km^2) and undisturbed meadow(~88 km^2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem,which is characterized by significantly declined proportion of intact wetlands,meadow,rangeland and a considerable increase ofdegraded meadow and larger areas of mobile dunes. In particular,not only temporal alteration of the landcover categories,the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands,the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures,overgrazing and trampling,rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock,less ditching in the rangeland,and the launching of a more strict nature reserve management by adjacent Ruoergai,Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.展开更多
The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. ...The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macro- invertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The fiver ecology was particular in the Ruoergai Wetland with the high beta diversity ofmacroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macro-invertebrates in the Ruoergai Wetland, moderate connec- tivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.展开更多
Zoige wetland is one of the most important methane emission centers in China. The oxidation of methane in the wetland affects global warming, soil ecology and atmospheric chemistry. Despite their global significance, ...Zoige wetland is one of the most important methane emission centers in China. The oxidation of methane in the wetland affects global warming, soil ecology and atmospheric chemistry. Despite their global significance, microorganisms that consume methane in Zoige wetland remain poorly characterized. In this study, we investigated methanotrophs diversity in soil samples from both anaerobic site and aerobic site in Zoige wetland using pmoA gene as a molecular marker. The cloning library was constructed according to the pmoA sequences detected. Four clusters of methanotrophs were detected. The phylogenetic tree showed that all four clusters detected were affiliated to type I methanotrophs. Two novel clusters (cluster 1, cluster 2) were found to relate to none of the recognized genera of methanotrophs. These clusters have no cultured representatives and reveal an ecological adaptation of particular uncultured methanotrophs in Zoige wetland. Two clusters were belonging to Methylobacter and Methylococcus separately. Denaturing gradient gel electrophoresis gel bands pattern retrieved from these two samples revealed that the community compositions of anaerobic soil and aerobic soil were different from each other while anaerobic soil showed a higher metanotrophs diversity. Real-time PCR assays of the two samples demonstrated that aerobic soil sample in Zoige wetland was 1.5 times as much copy numbers as anaerobic soil. These data illustrated that methanotrophs are a group of microorganisms influence the methane consumption in Zoige wetland.展开更多
Understanding the value of ecosystem services is useful for the decision making and sustainable management of the wetlands. It would be better to integrate ecological, economic and social factors into ecosystem servic...Understanding the value of ecosystem services is useful for the decision making and sustainable management of the wetlands. It would be better to integrate ecological, economic and social factors into ecosystem service valuation. The general value of the Zoigê Wetland Nature Reserve in the southwest China by integrating a social welfare weight, which is determined by a three-level analytic hierarchy process, was calculated. Through analyzing the functions, stakeholders and ecosystem services of the Zoigê Wetland Nature Reserve, the six main services, including substance production, flood control, gas regulation, climate regulation, recreation, and biodiversity conservation,were selected; and a three-level hierarchical structure model was established. The top(goal) level of the model refers to the total ecosystem services value of the Zoigê Wetland Nature Reserve, the middle level(stakeholder level) refers to stakeholders at different scales, and the bottom level(service level) refers to individual services provided by the Zoigê Wetland Nature Reserve. The results indicated that the ecosystem services value of the Zoigê Wetland Nature Reserve was 320.38×10~8yuan RMB in 2011. If including the social welfare, the value increased to 2258.68×10~8yuan RMB. The value of biodiversity conservation accounted for the largest proportion, which were 53% without the social welfare and 75% with it. And without the social welfare, flood control, gas regulation, climate regulation of the Zoigê Wetland Nature Reserve accounted for 26%, 11% and 8% of the total value, while the proportion that substance production and recreation values were of the total value were very small. Meanwhile, with the social weight,flood control, gas regulation, climate regulation, recreation of the Zoigê Wetland Nature Reserve accounted for 10%,13%, 1% and 1% of the total value, then the weight of substance production value was also the smallest.展开更多
文摘The high Zoige Basin (Ruoergai Plateau) on the eastern Tibetan Plateau is a fault depression formed during intensive uplifting of the Tibetan Plateau. The wetland is globally important in biodiversity and is composed of marshes, bogs, fens, wet meadows and shallow water interspersed with low hills and sub-alpine meadows. Most of the Zoige wetlands have long been one of the most important grazing lands in China. Recent rangeland policy has allowed grazing, and usable wetland areas have been being legally allocated to individuals or groups of households on a long-term lease basis. Privatizafion of the wetland has impacted the Zoige wetlands in aspects of hydrologic condition, landscape and biodiversity. The uneven spatial distribution of water resources onprivatelands has led to the practice of extracting ground water, which has decreased the perched water table in Zoige. Fencing off the rangelands and grazing on expanding sand dunes have affected landscapes. Variation in the water table has led to the changes in vegetation diversity, resulting in the changes in wildlife and aquatic diversities and ecosystem processes. Making use all year round of the pasture that was previously grazed only in summer has shrunk the daily activity space of wildlife, and the newly erected fences blocked the movement of wild animals looking for food in the snow to lower and open areas. To maintain the favorable conditions of the Zoige wetland ecosystem, the author suggests that, in addition to biophysical research and implementation of conservation practices, there is an immediate need to initiate an integrated management program, increase public awareness of wetland functions and provide better training for the local conservation staff.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of the Ministry of Science&Technology of China(Grant No.2007BAC18B01)the Project of Ministry of Environmental Protection of China(Grant No.200809086),the Project of Ministry of Environmental Protection of China(Grant No.200909060)the Project of Scientific Research and Technological Development of Guangxi(Grant NO.GKG1140002-2-4)
文摘The Zoige wetland is the biggest alpine wetland in the world,and an important water resource of the Yellow River.Due to natural and human factors,the Zoige wetland has been seriously degraded.Existing studies on the Zoige wetland mainly focus on the macro features of the wetland,while the influence of the surrounding faults on the Zoige wetland degradation is rarely studied.This study uses terrain data to analyze the cover change and the water loss caused by the Wqie-Seji fault based on the distributed hydrological model.The simulated water loss demonstrates that the Normalized Difference Vegetation Index(NDVI) is the most important factor for inducing water loss.The fault is also a factor that cannot be neglected,which has caused 33% of the wetland water loss.Therefore,it is of importance to study the influence of the fault on the wetland degradation.
基金support of the National Natural Science Foundation of China(Grant No.41201002)Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(Grant No.51Y184A61)+1 种基金China Postdoctoral Science Foundation funded project(Grant No.2012M512050)the National Natural Science Foundation of China(Grant No.41130533,41171010)
文摘The Zoige Wetland is located in the northeastern Qinghai-Tibetan Plateau, which is highly sensitive to global environment change and human disturbance because of its high elevation and cold environment, thus, it's a hotspot for land use and land cover change (LUCC) research. We used Landsat MSS images from 1975, Landsat ETM images from 2000, and Landsat TM images fi:om 1990 and 2005 to assess the LUCC in the study area, using GIS techniques, as well as topographic, vegetation, and soil maps combined with field investigations. The monitoring result shows that the study area's environment degraded rapidly between 1975 and 2005, including wetland shrinkage from 5,308 km2 to 4,980 lan2, sandy land expansion from 112 krn2 to 137 krn2, forest land decreasing from 5,686 km2 to 5,443 km2, and grassland degradation from 12,309 km2 to 10,672 km2. According to the analysis of meteorological data and social-economic statistical data, we concluded that the LUCC in the Zoige Wetland was caused by both natural and anthropogenic factors, but human activities were primarily responsible for the observed LUCC, thereby, we suggest human behaviors must be adjusted to control environmental degradation.
基金financially supported by National Natural Science Foundation of China(Grant No. 51179006)China National Funds for Distinguished Young Scientists (Grant No.51125035)+2 种基金National Science Foundation for Innovative Research Group (Grant No. 51121003)the Program for New Century Excellent Talents in University (NECT-10-0235)the Fok Ying Tung Foundation (Grant No. 132009)
文摘Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.
基金Under the auspices of National Natural Science Foundation of China(No.41201445,41103041)National Science and Technology Support Program(No.2012BAJ24B01)National High Technology Research and Development Program of China(No.2009AA12200307)
文摘Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoig6 Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index (NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index (NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 kin2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.
基金supported by the National Natural Science Foundation of China (No. 31372174)
文摘For oviparous species, oviposition site selection influences adult reproductive success as well as the fitness of the resulting offspring. Females usually choose potential egg-laying sites depending on abundance and quality to maximize their reproductive success. We focused on the oviposition site selection of this plateau frog in Zoige wetland and investigated how the egg-laying pattern of the females influences their offspring's survival. We found that shallow waters, decentralized spawning patterns, and egg attachment to appropriate distance to the water surface were the main spawning strategies of Nanorana pleskei endemic to Qinghai-Tibet Plateau. We argued that drought caused by increasing temperature and variable precipitation has probably influenced N. pleskei reproductive success, which may be a crucial reason for its population decline. Our findings have important significance for habitat preservation, increasing embryo survival and establishing practical conservation policies.
基金financially supported by the 11th Five Years Key Programs for Science and Technology Development of China (Grant No.2007BAC18B03)
文摘The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of wetland degradation on the structure and relative abundance of nitrogencycling(nitrogen-fixing,ammonia-oxidizing,and denitrifying) microbial communities in 3 soil types(intact wetland:marsh soil;early degrading wetland:marsh meadow soil;and degraded wetland:meadow soil) using 454-pyrosequencing.The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types.Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogenfixing and denitrifying microbial bacteria differed at the class,order,family,and genus levels among the 3soil types.At the genus level,the majority of nitrogenfixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils;whereas those related to Geobacter originated from meadow soil.The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh(except for the 40-60 cm layer),marsh meadow and meadow soils;whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil.The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils;whereas those related to Herbaspirillum originated from meadow soil.The distribution of operational taxonomic units(OTUs)and species were correlated with soil type based upon Venn and Principal Coordinates Analysis(PCoA).Changes in soil type,caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing,ammonia-oxidizing,and denitrifying microbial communities.
基金2023 financial research project of Sichuan Research Institute of Geological Survey“Carbon Storage Monitoring of Wetland Ecosystem in Northwest Sichuan Plateau based on Big Data and expert Knowledge” (SCIGS-CYBXM-2023014).
文摘Peatlands,as a special type of wetland,occupy only 3%of the Earth’s surface,but bear about one-third of the world’s soil carbon storage and play an important role in the global carbon cycle.The Zoige Wetland is located on the eastern edge of the Qinghai-Tibet Plateau,and its peat reserves are up to 1.9 billion tons,accounting for more than 40%of the country’s peat resources,which is an important support for China to achieve the“double carbon”goal.This paper reviews the research status and storage estimation of soil organic carbon in Zoige Wetland.The statistical results show that there is a large difference in the estimation of carbon storage in the peatland of Zoige(0.43-1.42 Pg).The reasons are mainly related to marked differences in values reported for soil densities,organic carbon levels,and accumulation rates.There are still great uncertainties in the estimation of wetland carbon stocks,and future studies should focus on reducing soil carbon sink uncertainties,climate change,the impact of permafrost melting on carbon sink functions,the impact of degraded ecosystem restoration and sink enhancement pathways,and other greenhouse gas functions.In order to accurately reveal the current situation and future trend of carbon sink in peat wetlands,a model-multi-source observation data fusion system was constructed to complement the observation shortcomings in key areas,and provide reference and support for the construction of carbon neutral ecological civilization.
基金funded by the German Research Foundation (DFG) for the fieldwork and China Scholarship Council (201306190112)
文摘Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However,there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study,spectral information from two Landsat-5 TM scenes(04.08.1994 and 28.07.2009,respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently,the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km^2 degraded meadow. Concerning other land-covers,shallow wetland increases ~107 km^2 and aeolian sediments(mobile dunes and sand sheets) have an increase of ~30 km^2. Considering the deterioration,an obvious decrease of ~440 km^2 degraded wetland can be observed. Likewise,decrease of deep wetland(~78 km^2),humid meadow(~80 km^2) and undisturbed meadow(~88 km^2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem,which is characterized by significantly declined proportion of intact wetlands,meadow,rangeland and a considerable increase ofdegraded meadow and larger areas of mobile dunes. In particular,not only temporal alteration of the landcover categories,the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands,the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures,overgrazing and trampling,rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock,less ditching in the rangeland,and the launching of a more strict nature reserve management by adjacent Ruoergai,Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.
基金Acknowledgements This study was financially supported by the Key Research Project of the Higher Education Institutions of Henan Province (16A416002), the Doctoral Scientific Research Foundation of Henan University of Science and Technology (13480017), the National Natural Science Foundation of China (Grant No. 91547112), the Foundation of the Yellow River Institute of Hydraulic Research (No. HKY-JBYW-2016-03), and the International Science & Technology Cooperation Program of China (2014DFG72010).
文摘The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macro- invertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The fiver ecology was particular in the Ruoergai Wetland with the high beta diversity ofmacroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macro-invertebrates in the Ruoergai Wetland, moderate connec- tivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.
基金supported by the Knowledge InnovationGrant of the Chinese Academy of Sciences (No. kzcx2-yw-418-03)
文摘Zoige wetland is one of the most important methane emission centers in China. The oxidation of methane in the wetland affects global warming, soil ecology and atmospheric chemistry. Despite their global significance, microorganisms that consume methane in Zoige wetland remain poorly characterized. In this study, we investigated methanotrophs diversity in soil samples from both anaerobic site and aerobic site in Zoige wetland using pmoA gene as a molecular marker. The cloning library was constructed according to the pmoA sequences detected. Four clusters of methanotrophs were detected. The phylogenetic tree showed that all four clusters detected were affiliated to type I methanotrophs. Two novel clusters (cluster 1, cluster 2) were found to relate to none of the recognized genera of methanotrophs. These clusters have no cultured representatives and reveal an ecological adaptation of particular uncultured methanotrophs in Zoige wetland. Two clusters were belonging to Methylobacter and Methylococcus separately. Denaturing gradient gel electrophoresis gel bands pattern retrieved from these two samples revealed that the community compositions of anaerobic soil and aerobic soil were different from each other while anaerobic soil showed a higher metanotrophs diversity. Real-time PCR assays of the two samples demonstrated that aerobic soil sample in Zoige wetland was 1.5 times as much copy numbers as anaerobic soil. These data illustrated that methanotrophs are a group of microorganisms influence the methane consumption in Zoige wetland.
基金Under the auspices of the Special Fund for Forestry Scientific Research in the Public Interest of China(201204201)
文摘Understanding the value of ecosystem services is useful for the decision making and sustainable management of the wetlands. It would be better to integrate ecological, economic and social factors into ecosystem service valuation. The general value of the Zoigê Wetland Nature Reserve in the southwest China by integrating a social welfare weight, which is determined by a three-level analytic hierarchy process, was calculated. Through analyzing the functions, stakeholders and ecosystem services of the Zoigê Wetland Nature Reserve, the six main services, including substance production, flood control, gas regulation, climate regulation, recreation, and biodiversity conservation,were selected; and a three-level hierarchical structure model was established. The top(goal) level of the model refers to the total ecosystem services value of the Zoigê Wetland Nature Reserve, the middle level(stakeholder level) refers to stakeholders at different scales, and the bottom level(service level) refers to individual services provided by the Zoigê Wetland Nature Reserve. The results indicated that the ecosystem services value of the Zoigê Wetland Nature Reserve was 320.38×10~8yuan RMB in 2011. If including the social welfare, the value increased to 2258.68×10~8yuan RMB. The value of biodiversity conservation accounted for the largest proportion, which were 53% without the social welfare and 75% with it. And without the social welfare, flood control, gas regulation, climate regulation of the Zoigê Wetland Nature Reserve accounted for 26%, 11% and 8% of the total value, while the proportion that substance production and recreation values were of the total value were very small. Meanwhile, with the social weight,flood control, gas regulation, climate regulation, recreation of the Zoigê Wetland Nature Reserve accounted for 10%,13%, 1% and 1% of the total value, then the weight of substance production value was also the smallest.