A moderate pressure/high temperature zonal metamorphic complex in the Tongulack Mountain Ridge, Altai, Russia, is described, and the applicability of the models of magmatic intrusion and fluid flow to explanation of i...A moderate pressure/high temperature zonal metamorphic complex in the Tongulack Mountain Ridge, Altai, Russia, is described, and the applicability of the models of magmatic intrusion and fluid flow to explanation of its origin discussed. The Precambrian complex was formed at 500–700°C and 3.0–5.5 kbars; it is a linear, 25–30 km wide, thermal anticline with a curved axis showing symmetric metamorphic zoning. The metamorphism was isochemical by its nature, as is corroborated by the chemical compositions of the rocks. Four zones can be recognized within the metamorphic complex: chloritic (on the peripheries), cordieritic, sillimanitic and staurolite-out (in the centre). The zones are separated by successive isograds: cordierite, staurolite-in or sillimanite and staurolite-out. It is argued that the origin of the metamorphic zoning can be explained best by a combined fluid-magmatic model; conductive heat flow from the intrusion predominated considerably over the fluid flux in heat transfer: the fluid flow rate was estimated as about 3 ? 10?9 g/cm2, ? s. The modern position of the axial region of the metamorphic belt is predicted to be lying roughly about 1.5 km above the roof of the intrusive body.展开更多
The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model.The maximum hydrogen injection rate was evaluated on the basis of the simulati...The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model.The maximum hydrogen injection rate was evaluated on the basis of the simulation of the vertical temperature pattern in the blast furnace with a focus on the thermal reserve zone.The effects of blast temperature and oxygen enrichment were also examined to estimate coke replacement ratio,productivity,hydrogen utilization efficiency,and carbon dioxide emission reduction.For blast temperature of 1200℃,the maximum hydrogen injection rate was 19.0 and 28.3 kg of H_(2)/t of hot metal(HM)for oxygen enrichment of 2vol%and 12vol%,respectively.Results showed a coke replacement ratio of 3-4 kg of coke/kg of H_(2),direct CO_(2) emission reduction of 10.2%-17.8%,and increased productivity by up to 13.7%depending on oxygen enrichment level.Increasing blast temperature further reduced the direct CO_(2) emissions.Hydrogen utilization degree reached the maximum of 0.52-0.54 H_(2)O/(H_(2)O+H_(2)).The decarbonization potential of hydrogen injection was estimated in the range from 9.4 t of CO_(2)/t of H_(2) to 9.7 t of CO_(2)/t of H_(2).For economic feasibility,hydrogen injection requires revolutionary progress in terms of low-cost H_(2) generation unless the technological change is motivated by the carbon emission cost.Hydrogen injection may unfavorably affect the radial temperature pattern of the raceway,which could be addressed by adopting appropriate injection techniques.展开更多
Rock masses without pre-existing macrocracks can usually be considered as granular materials with only microcracks.During the excavation of the tunnels,microcracks may nucleate,grow and propagate through the rock matr...Rock masses without pre-existing macrocracks can usually be considered as granular materials with only microcracks.During the excavation of the tunnels,microcracks may nucleate,grow and propagate through the rock matrix;secondary microcracks may appear,and discontinuous and incompatible deformation of rock masses may occur.The classical continuum elastoplastic theory is not suitable for analyzing discontinuous and incompatible deformation of rock masses.Based on non-Euclidean model of the discontinuous and incompatible deformation of rock masses,the distribution of stresses in the surrounding rock masses in deep tunnels is fluctuant or wave-like.The stress concentration at the tips of microcracks located in vicinity of stress wave crest is comparatively large,which may lead to the unstable growth and coalescence of secondary microcracks,and consequently the occurrence of fractured zones.On the other hand,the stress concentration at the tips of microcracks located around stress wave trough is relatively small,which may lead to the arrest of microcracks,and thus the non-fractured zones.The alternate appearance of stress wave crest and trough thus may induce the alternate occurrence of fractured and non-fractured zones in deep rock masses.For brittle rocks,the dissipated energy of microcrack growth is small,but the elastic strain energy stored in rock masses may be larger than the dissipated energy growths of pre-existing microcracks and secondary microcracks.The sudden release of the residual elastic strain energy may lead to rockburst.Based on this understanding,the criteria of rockburst are established.Furthermore,the relationship between rockbursts and zonal disintegration in the surrounding rock masses around deep tunnels is studied.The influences of the in-situ stresses and the physico-mechanical parameters on the distribution of rockburst zones and the ejection velocity of rock fragments are investigated in detail.展开更多
This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in seri...This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in series form of beta distributions.展开更多
The strain-gradient and non-Euclidean continuum theories are employed for construction of non- classical solutions of continuum models. The linear approximation of both models' results in identical structures in term...The strain-gradient and non-Euclidean continuum theories are employed for construction of non- classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory, The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.展开更多
A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange...A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided.展开更多
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is...To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current.From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.展开更多
文摘A moderate pressure/high temperature zonal metamorphic complex in the Tongulack Mountain Ridge, Altai, Russia, is described, and the applicability of the models of magmatic intrusion and fluid flow to explanation of its origin discussed. The Precambrian complex was formed at 500–700°C and 3.0–5.5 kbars; it is a linear, 25–30 km wide, thermal anticline with a curved axis showing symmetric metamorphic zoning. The metamorphism was isochemical by its nature, as is corroborated by the chemical compositions of the rocks. Four zones can be recognized within the metamorphic complex: chloritic (on the peripheries), cordieritic, sillimanitic and staurolite-out (in the centre). The zones are separated by successive isograds: cordierite, staurolite-in or sillimanite and staurolite-out. It is argued that the origin of the metamorphic zoning can be explained best by a combined fluid-magmatic model; conductive heat flow from the intrusion predominated considerably over the fluid flux in heat transfer: the fluid flow rate was estimated as about 3 ? 10?9 g/cm2, ? s. The modern position of the axial region of the metamorphic belt is predicted to be lying roughly about 1.5 km above the roof of the intrusive body.
文摘The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model.The maximum hydrogen injection rate was evaluated on the basis of the simulation of the vertical temperature pattern in the blast furnace with a focus on the thermal reserve zone.The effects of blast temperature and oxygen enrichment were also examined to estimate coke replacement ratio,productivity,hydrogen utilization efficiency,and carbon dioxide emission reduction.For blast temperature of 1200℃,the maximum hydrogen injection rate was 19.0 and 28.3 kg of H_(2)/t of hot metal(HM)for oxygen enrichment of 2vol%and 12vol%,respectively.Results showed a coke replacement ratio of 3-4 kg of coke/kg of H_(2),direct CO_(2) emission reduction of 10.2%-17.8%,and increased productivity by up to 13.7%depending on oxygen enrichment level.Increasing blast temperature further reduced the direct CO_(2) emissions.Hydrogen utilization degree reached the maximum of 0.52-0.54 H_(2)O/(H_(2)O+H_(2)).The decarbonization potential of hydrogen injection was estimated in the range from 9.4 t of CO_(2)/t of H_(2) to 9.7 t of CO_(2)/t of H_(2).For economic feasibility,hydrogen injection requires revolutionary progress in terms of low-cost H_(2) generation unless the technological change is motivated by the carbon emission cost.Hydrogen injection may unfavorably affect the radial temperature pattern of the raceway,which could be addressed by adopting appropriate injection techniques.
基金Supported by the National Natural Science Foundation of China (51078371,51021001)the Natural Science Foundation Project of CQ CSTC (2009BA4046,2009AB6194)
文摘Rock masses without pre-existing macrocracks can usually be considered as granular materials with only microcracks.During the excavation of the tunnels,microcracks may nucleate,grow and propagate through the rock matrix;secondary microcracks may appear,and discontinuous and incompatible deformation of rock masses may occur.The classical continuum elastoplastic theory is not suitable for analyzing discontinuous and incompatible deformation of rock masses.Based on non-Euclidean model of the discontinuous and incompatible deformation of rock masses,the distribution of stresses in the surrounding rock masses in deep tunnels is fluctuant or wave-like.The stress concentration at the tips of microcracks located in vicinity of stress wave crest is comparatively large,which may lead to the unstable growth and coalescence of secondary microcracks,and consequently the occurrence of fractured zones.On the other hand,the stress concentration at the tips of microcracks located around stress wave trough is relatively small,which may lead to the arrest of microcracks,and thus the non-fractured zones.The alternate appearance of stress wave crest and trough thus may induce the alternate occurrence of fractured and non-fractured zones in deep rock masses.For brittle rocks,the dissipated energy of microcrack growth is small,but the elastic strain energy stored in rock masses may be larger than the dissipated energy growths of pre-existing microcracks and secondary microcracks.The sudden release of the residual elastic strain energy may lead to rockburst.Based on this understanding,the criteria of rockburst are established.Furthermore,the relationship between rockbursts and zonal disintegration in the surrounding rock masses around deep tunnels is studied.The influences of the in-situ stresses and the physico-mechanical parameters on the distribution of rockburst zones and the ejection velocity of rock fragments are investigated in detail.
基金the National Natural Science Foundation of China (10761010, 10771185)the Mathematics Tianyuan Youth Foundation of China
文摘This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in series form of beta distributions.
文摘The strain-gradient and non-Euclidean continuum theories are employed for construction of non- classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory, The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.
文摘A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided.
基金This study is supported by the National Natural Sci-ence Foundation of China under contract No.40136010the Major State Basic Research Program of China under contract No.G1999043808the Youth Fund of National“863”Project of China under contract No.2002AA639350.
文摘To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current.From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.