Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
The adsorption of low-coverage of F and Cl adatoms on the Mg(0001) surface was investigated using first-principles calculations based on the density functional theory(DFT).The stability of the(2×2) structur...The adsorption of low-coverage of F and Cl adatoms on the Mg(0001) surface was investigated using first-principles calculations based on the density functional theory(DFT).The stability of the(2×2) structures formed by halogen atoms adsorbed at different sites was determined.The difference between the adsorption of F and Cl on Mg(0001) surface was also discussed.The calculation results show that hollow sites are the energetically most favorable at the low-coverage.It can be concluded from the Mulliken charges and density of states that electrons transfer from the substrate Mg atoms to the adatoms,which leads to the formation of adsorbate bond and further causes the stronger interaction between Mg atom and adatom.The interaction between Cl and Mg atoms is weaker than the interaction between F and Mg.展开更多
The adsorption and the growth of ZnO on α-Al2O3(0001) surface at various temperatures were theoretically calculated by using a plane wave pseudopotentials (USP) method based on density functional theory.The avera...The adsorption and the growth of ZnO on α-Al2O3(0001) surface at various temperatures were theoretically calculated by using a plane wave pseudopotentials (USP) method based on density functional theory.The average adsorption energy of ZnO at 400, 600 and 800 ℃ is 4.16±0.08, 4.25±0.11 and 4.05±0.23 eV respectively. Temperature has a remarkable effect on the structure of the surface and the interface of ZnO/α-Al2O3(0001). It is found that the Zn-hexagonal symmetry deflexion does not appear during the adsorption growth of ZnO at 400 ℃, and that the ZnO[10^-10] is parallel with the [10^-10] of the α-Al2O3(0001), which is favorable for forming ZnO film with the Zn-terminated surface. It is observed from simulation that there are two kinds of surface structures in the adsorption of ZnO at 600 ℃: one is the ZnO surface that has the Zn-terminated structure, and whose [10^-10] parallels the [10^-10] of the substrate surface, and the other is the ZnO[10^-10] //sapphire [11-20] with the O-terminated surface. The energy barrier of the phase transition between these two different surface structures is about 1.6 eV, and the latter is more stable. Therefore,the suitable temperature for the thin film growth of ZnO on sapphire is about 600 ℃, and it facilitates the formation of wurtzite structure containing Zn-O-Zn-O-Zn-O double-layers as a growth unit-cell. At 600 ℃, the average bond length of Zn-O is 0.190±0.01 nm, and the ELF value indicates that the bond of (substrate)-O-Zn-O has a distinct covalent character, whereas the (Zn)O-Al (substrate) shows a clear character of ionic bond. However, at a temperature of 800 ℃, the dissociation of Al and O atoms on the surface of the α-Al2O3(0001) leads to a disordered surface and interface structure. Thus, the Zn-hexagonal symmetry structure of the ZnO film is not observed under this condition.展开更多
The adsorption and decomposition of H2O on GaN(0001) surface have been explored employing density functional theory (DFT). Two distinct adsorption features of H2O on GaN(0001) corresponding to molecular adsorpti...The adsorption and decomposition of H2O on GaN(0001) surface have been explored employing density functional theory (DFT). Two distinct adsorption features of H2O on GaN(0001) corresponding to molecular adsorption and H-OH dissociative adsorption are revealed by our calculations. The activities of the surface reactions of H2O on GaN(0001) surface are investigated. For the stepwise processes of H2O decomposition into H2 in gas phase and adsorbed O atom (H2O(g)→H2O(chem)→OH(chem) + H(chem)→2H(chem) + O(chem)→H2(g) + O(chem)), the first and second steps are facile and can even occur at room temperature; while the last two have high barriers and thus are difficult to proceed, especially the fourth step is endothermic. In short, H2O adsorption and decomposition into H2 in gas phase and adsorbed O atom on GaN(0001) surface are exothermic by -43.98 kcal/mol.展开更多
In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorb...In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorbed water molecules are energetically favoured adsorbed on the atop sites, and the dimer adsorption is found to be the most stable with a peak adsorption energy of - 437 meV. Further analyses have revealed that the essential bonding interaction between the water monomer and the metal substrate is the hybridization of the water 3al-like molecular orbital with the (s, P2) orbitals of the surface beryllium atoms. While in the case of the water dimer adsorption, the lbz-like orbital of the H2O molecule plays a dominant role.展开更多
The adsorption and decomposition of H2S on the ZnO(0001) surface have been investigated with first-principles calculations.The results reveal that H2S is dissociatively adsorbed on the clean ZnO(0001) surface to g...The adsorption and decomposition of H2S on the ZnO(0001) surface have been investigated with first-principles calculations.The results reveal that H2S is dissociatively adsorbed on the clean ZnO(0001) surface to generate HS-and hydrogen species.To our interest,as indicated by Mulliken charge and density of states of the configuration calculation,the bonding mechanism of H2S on the ZnO(0001) surface can involve the donation of charge from the "s lone pairs" into the surface and the back donation of surface electrons to H2S.Therefore,the electrons should play an important role in decomposition.Furthermore,the reactivity of H2S adsorption and further thermal decomposition reactions on the ZnO(0001) surface have also been discussed by calculating the possible reaction pathways.As expected,H2 will be easily generated during the decomposition process.展开更多
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
6H-SiC is an important semiconductor material. The 6H-SiC wafer is always exposed to a high-humidity environment and the effect from the absorbed water molecule and some relative adsorbates is not negligible. Here, th...6H-SiC is an important semiconductor material. The 6H-SiC wafer is always exposed to a high-humidity environment and the effect from the absorbed water molecule and some relative adsorbates is not negligible. Here, the oxygen and water molecules absorbed on the 6H-SiC(0001) surface and the dissociation process were studied with density functional theory. On the 6H-SiC(0001) surface, absorbed O2 is spontaneously dissociated into O*, which is absorbed on a hollow site, and further transforms the 6H-SiC(0001) surface into SiO2. The absorbed H2O is spontaneously broken into OH*and H*, which are both absorbed on the top of the Si atom, and OH* is further reversibly transformed into O* and H*. The H* could saturate the dangling Si bond and change the absorption type of O*, which could stabilize the 6H-SiC(0001) surface and prevent it from transforming into SiO2.展开更多
Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) s...Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) surface are in molecular form, while others are dissociated. The thermal reaction products of H2, CH3·, H2O, CO, CH2O, CO2 and CH3OH have been detected. Experiments with the UV laser light indicate that the irradiation can promote the dissociation of CH3OH/CH3O· to form CH2O, which can be fu- ture converted to HCOO- during heating or illumination. The reaction between CH3OHZn and OHad can form the H2O molecule at the Zn site. Both temperature and illumination promote the desorption of CH3· from CH3O·. The research provides a new insight into the photocatalytic reaction mechanism of CH3OH on ZnO(0001).展开更多
The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information...The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities.展开更多
Based on a first-principles density functional plane-wave ultrasoft pseudopotential method,the surface properties of two different types of terminated CrB2(0001)are calculated and compared,such as surface relaxation,s...Based on a first-principles density functional plane-wave ultrasoft pseudopotential method,the surface properties of two different types of terminated CrB2(0001)are calculated and compared,such as surface relaxation,surface energy and electricity structure.The results of surface relaxation show surface interlayer distance converges rapidly for both terminated CrB2(0001)when the number of the atoms layers reaches 9.Through analysis of charge density difference and partial density of states(PDOS),it can be concluded that CrB2(0001)models with B termination have smaller interface energy,stronger electronic interaction than another models and the form of termination is more stable.展开更多
Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic an...Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic and microscopic observation results show that squamae, cracks, steps and wedges exist on the surface when the samples were rolled at temperatures around Ty. However, a smooth and fiat surface appears when the samples were rolled at temperatures near ( Tx - 50) K. These results indicate that the mode of deformation in the supercooled liquid region is a partially homogeneous flow at a temperature around T9, and a fully homogeneous one at temperatures near ( Tx - 50) K. According to the results, it is more feasible to roll the amorphous alloys at temperatures near ( Tx - 50) K to obtain parts with smooth and fiat surface.展开更多
A zirconium modified MCM-48 mesoporous material was synthesized by surfactant-templated method. Surface grafting Zr-MCM-48 with tungstophosphoric acid led to a great enhancement of both the number of the Br?nsted acid...A zirconium modified MCM-48 mesoporous material was synthesized by surfactant-templated method. Surface grafting Zr-MCM-48 with tungstophosphoric acid led to a great enhancement of both the number of the Br?nsted acid sites and acidity strength in comparison with the bare support. At 100°C, the 30 wt% H3PW12O40/Zr-MCM-48 contained 174 μmol/g Br?nsted acid sites which were 14.5 times greater than that of Zr-MCM-48. The Keggin structure of the grafted heteropolyacid was rather stable after calcination at 400°C for 2 h, approximately 93.3% of Keggin structure in the dispersed heteropolyacid were remained without destruction but slightly distorted in some degree, as evidenced by FTIR characterization and 31P NMR-MAS analysis. This H3PW12O40/Zr-MCM-48 solid with three dimensional mesoporous system, large surface area and very strong Br?nsted acidity will be a promising catalyst for acid catalytic reactions.展开更多
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur...In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.展开更多
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
基金Project (51201079) supported by the National Natural Science Foundation of ChinaProject (2012Z099) supported by the Scientific Research Fund of Department of Education of Yunnan Province,ChinaProject (KKSY201251033) supported by the Scientific Research Foundation for Introduced Talents of KMUST,China
文摘The adsorption of low-coverage of F and Cl adatoms on the Mg(0001) surface was investigated using first-principles calculations based on the density functional theory(DFT).The stability of the(2×2) structures formed by halogen atoms adsorbed at different sites was determined.The difference between the adsorption of F and Cl on Mg(0001) surface was also discussed.The calculation results show that hollow sites are the energetically most favorable at the low-coverage.It can be concluded from the Mulliken charges and density of states that electrons transfer from the substrate Mg atoms to the adatoms,which leads to the formation of adsorbate bond and further causes the stronger interaction between Mg atom and adatom.The interaction between Cl and Mg atoms is weaker than the interaction between F and Mg.
文摘The adsorption and the growth of ZnO on α-Al2O3(0001) surface at various temperatures were theoretically calculated by using a plane wave pseudopotentials (USP) method based on density functional theory.The average adsorption energy of ZnO at 400, 600 and 800 ℃ is 4.16±0.08, 4.25±0.11 and 4.05±0.23 eV respectively. Temperature has a remarkable effect on the structure of the surface and the interface of ZnO/α-Al2O3(0001). It is found that the Zn-hexagonal symmetry deflexion does not appear during the adsorption growth of ZnO at 400 ℃, and that the ZnO[10^-10] is parallel with the [10^-10] of the α-Al2O3(0001), which is favorable for forming ZnO film with the Zn-terminated surface. It is observed from simulation that there are two kinds of surface structures in the adsorption of ZnO at 600 ℃: one is the ZnO surface that has the Zn-terminated structure, and whose [10^-10] parallels the [10^-10] of the substrate surface, and the other is the ZnO[10^-10] //sapphire [11-20] with the O-terminated surface. The energy barrier of the phase transition between these two different surface structures is about 1.6 eV, and the latter is more stable. Therefore,the suitable temperature for the thin film growth of ZnO on sapphire is about 600 ℃, and it facilitates the formation of wurtzite structure containing Zn-O-Zn-O-Zn-O double-layers as a growth unit-cell. At 600 ℃, the average bond length of Zn-O is 0.190±0.01 nm, and the ELF value indicates that the bond of (substrate)-O-Zn-O has a distinct covalent character, whereas the (Zn)O-Al (substrate) shows a clear character of ionic bond. However, at a temperature of 800 ℃, the dissociation of Al and O atoms on the surface of the α-Al2O3(0001) leads to a disordered surface and interface structure. Thus, the Zn-hexagonal symmetry structure of the ZnO film is not observed under this condition.
基金Supported by the National Natural Science Foundation of China (No. 20673019)
文摘The adsorption and decomposition of H2O on GaN(0001) surface have been explored employing density functional theory (DFT). Two distinct adsorption features of H2O on GaN(0001) corresponding to molecular adsorption and H-OH dissociative adsorption are revealed by our calculations. The activities of the surface reactions of H2O on GaN(0001) surface are investigated. For the stepwise processes of H2O decomposition into H2 in gas phase and adsorbed O atom (H2O(g)→H2O(chem)→OH(chem) + H(chem)→2H(chem) + O(chem)→H2(g) + O(chem)), the first and second steps are facile and can even occur at room temperature; while the last two have high barriers and thus are difficult to proceed, especially the fourth step is endothermic. In short, H2O adsorption and decomposition into H2 in gas phase and adsorbed O atom on GaN(0001) surface are exothermic by -43.98 kcal/mol.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074217)
文摘In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorbed water molecules are energetically favoured adsorbed on the atop sites, and the dimer adsorption is found to be the most stable with a peak adsorption energy of - 437 meV. Further analyses have revealed that the essential bonding interaction between the water monomer and the metal substrate is the hybridization of the water 3al-like molecular orbital with the (s, P2) orbitals of the surface beryllium atoms. While in the case of the water dimer adsorption, the lbz-like orbital of the H2O molecule plays a dominant role.
基金supported by the Natural Science Foundation of Fujian Province (No. E0510004)
文摘The adsorption and decomposition of H2S on the ZnO(0001) surface have been investigated with first-principles calculations.The results reveal that H2S is dissociatively adsorbed on the clean ZnO(0001) surface to generate HS-and hydrogen species.To our interest,as indicated by Mulliken charge and density of states of the configuration calculation,the bonding mechanism of H2S on the ZnO(0001) surface can involve the donation of charge from the "s lone pairs" into the surface and the back donation of surface electrons to H2S.Therefore,the electrons should play an important role in decomposition.Furthermore,the reactivity of H2S adsorption and further thermal decomposition reactions on the ZnO(0001) surface have also been discussed by calculating the possible reaction pathways.As expected,H2 will be easily generated during the decomposition process.
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
基金supported by the Fundamental Research Project of Qinghai Province (2017-ZJ-795)
文摘6H-SiC is an important semiconductor material. The 6H-SiC wafer is always exposed to a high-humidity environment and the effect from the absorbed water molecule and some relative adsorbates is not negligible. Here, the oxygen and water molecules absorbed on the 6H-SiC(0001) surface and the dissociation process were studied with density functional theory. On the 6H-SiC(0001) surface, absorbed O2 is spontaneously dissociated into O*, which is absorbed on a hollow site, and further transforms the 6H-SiC(0001) surface into SiO2. The absorbed H2O is spontaneously broken into OH*and H*, which are both absorbed on the top of the Si atom, and OH* is further reversibly transformed into O* and H*. The H* could saturate the dangling Si bond and change the absorption type of O*, which could stabilize the 6H-SiC(0001) surface and prevent it from transforming into SiO2.
基金National Key R&D Program of China (No.2016YFF0200500), the National Natural Science Foundation of China (No.21473173, No.21590802, and No.21403207), the Strategic Prior- ity Research Program of Chinese Academy of Sciences (No.XDB17000000), and the Fundamental Research Funds for the Central Universities. We thank Chen-biao Xu at Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Wen-shao Yang at Hangzhou Institute of Advanced Studies, Zhejiang Normal Uni- versity for their help during experiments.
文摘Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) surface are in molecular form, while others are dissociated. The thermal reaction products of H2, CH3·, H2O, CO, CH2O, CO2 and CH3OH have been detected. Experiments with the UV laser light indicate that the irradiation can promote the dissociation of CH3OH/CH3O· to form CH2O, which can be fu- ture converted to HCOO- during heating or illumination. The reaction between CH3OHZn and OHad can form the H2O molecule at the Zn site. Both temperature and illumination promote the desorption of CH3· from CH3O·. The research provides a new insight into the photocatalytic reaction mechanism of CH3OH on ZnO(0001).
基金Supported by the National Natural Science Foundation of China (No 20673019)
文摘The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities.
文摘Based on a first-principles density functional plane-wave ultrasoft pseudopotential method,the surface properties of two different types of terminated CrB2(0001)are calculated and compared,such as surface relaxation,surface energy and electricity structure.The results of surface relaxation show surface interlayer distance converges rapidly for both terminated CrB2(0001)when the number of the atoms layers reaches 9.Through analysis of charge density difference and partial density of states(PDOS),it can be concluded that CrB2(0001)models with B termination have smaller interface energy,stronger electronic interaction than another models and the form of termination is more stable.
基金Project supported by National Natural Science Foundation of Chi-na (Grant Nos .50201009 ,50031010)
文摘Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic and microscopic observation results show that squamae, cracks, steps and wedges exist on the surface when the samples were rolled at temperatures around Ty. However, a smooth and fiat surface appears when the samples were rolled at temperatures near ( Tx - 50) K. These results indicate that the mode of deformation in the supercooled liquid region is a partially homogeneous flow at a temperature around T9, and a fully homogeneous one at temperatures near ( Tx - 50) K. According to the results, it is more feasible to roll the amorphous alloys at temperatures near ( Tx - 50) K to obtain parts with smooth and fiat surface.
文摘A zirconium modified MCM-48 mesoporous material was synthesized by surfactant-templated method. Surface grafting Zr-MCM-48 with tungstophosphoric acid led to a great enhancement of both the number of the Br?nsted acid sites and acidity strength in comparison with the bare support. At 100°C, the 30 wt% H3PW12O40/Zr-MCM-48 contained 174 μmol/g Br?nsted acid sites which were 14.5 times greater than that of Zr-MCM-48. The Keggin structure of the grafted heteropolyacid was rather stable after calcination at 400°C for 2 h, approximately 93.3% of Keggin structure in the dispersed heteropolyacid were remained without destruction but slightly distorted in some degree, as evidenced by FTIR characterization and 31P NMR-MAS analysis. This H3PW12O40/Zr-MCM-48 solid with three dimensional mesoporous system, large surface area and very strong Br?nsted acidity will be a promising catalyst for acid catalytic reactions.
基金the National Natural Science Foundation of China(Nos.51801079,52001140)the Portugal National Funds through FCT Project(No.2021.04115).
文摘In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.